Isolation of Camelid Single-Domain Antibodies Against Native Proteins Using Recombinant Multivalent Peptide Ligands

  • Protocol
Peptide Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1348))

Abstract

Generation of antibodies against desired epitopes on folded proteins may be hampered by various characteristics of the target protein, including antigenic and immunogenic dominance of irrelevant epitopes and/or steric occlusion of the desired epitope. In such cases, peptides encompassing linear epitopes of the native protein represent attractive alternative reagents for immunization and screening. Peptide antigens are typically prepared by fusing or conjugating the peptide of interest to a carrier protein. The utility of such antigens depends on many factors including the peptide’s amino acid sequence, display valency, display format (synthetic conjugate vs. recombinant fusion) and characteristics of the carrier. Here we provide detailed protocols for: (1) preparation of DNA constructs encoding peptides fused to verotoxin (VT) multimerization domain; (2) expression, purification, and characterization of the multivalent peptide-VT ligands; (3) concurrent panning of a non-immune phage-displayed camelid VHH library against the peptide-VT ligands and native protein; and (4) identification of VHHs enriched via panning using next-generation sequencing techniques. These methods are simple, rapid and can be easily adapted to yield custom peptide-VT ligands that appear to maintain the antigenic structures of the peptide. However, we caution that peptide sequences should be chosen with great care, taking into account structural, immunological, and biophysical information on the protein of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74:277–302

    CAS  PubMed  Google Scholar 

  2. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. De Marco A (2011) Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Factories 10:44

    Article  Google Scholar 

  4. Bradbury AR, Sidhu S, Dubel S et al (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hutchings CJ, Koglin M, Marshall FH (2010) Therapeutic antibodies directed at G protein-coupled receptors. mAbs 2:594–606

    Article  PubMed Central  PubMed  Google Scholar 

  6. ** of a conformational epitope on the cashew allergen Ana o 2: a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association. Mol Immunol 47:1808–1816

    Article  CAS  PubMed  Google Scholar 

  7. Cleveland SM, Buratti E, Jones TD et al (2000) Immunogenic and antigenic dominance of a nonneutralizing epitope over a highly conserved neutralizing epitope in the gp41 envelope glycoprotein of human immunodeficiency virus type 1: its deletion leads to a strong neutralizing response. Virology 266:66–78

    Article  CAS  PubMed  Google Scholar 

  8. Grant GA (2003) Synthetic peptides for production of antibodies that recognize intact proteins. Curr Protoc Immunol Chapter 9:Unit 9 2

    Google Scholar 

  9. Van Regenmortel MH (2001) Antigenicity and immunogenicity of synthetic peptides. Biologicals 29:209–213

    Article  PubMed  Google Scholar 

  10. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    Article  PubMed Central  PubMed  Google Scholar 

  11. Slatter DA, Bihan DG, Farndale RW (2011) The effect of purity upon the triple-helical stability of collagenous peptides. Biomaterials 32:6621–6632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Minor DL Jr, Kim PS (1996) Context-dependent secondary structure formation of a designed protein sequence. Nature 380:730–734

    Article  CAS  PubMed  Google Scholar 

  13. Bastings MM, Helms BA, Van Baal I et al (2011) From phage display to dendrimer display: insights into multivalent binding. J Am Chem Soc 133:6636–6641

    Article  CAS  PubMed  Google Scholar 

  14. Han X, Liu Y, Wu FG et al (2014) Different interfacial behaviors of peptides chemically immobilized on surfaces with different linker lengths and via different termini. J Phys Chem B 118:2904–2912

    Article  CAS  PubMed  Google Scholar 

  15. Irving MB, Craig L, Menendez A et al (2010) Exploring peptide mimics for the production of antibodies against discontinuous protein epitopes. Mol Immunol 47:1137–1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Stone E, Hirama T, Tanha J et al (2007) The assembly of single domain antibodies into bispecific decavalent molecules. J Immunol Methods 318:88–94

    Article  CAS  PubMed  Google Scholar 

  17. Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2009) Isolation of monoclonal antibody fragments from phage display libraries. Methods Mol Biol 502:341–364

    Article  CAS  PubMed  Google Scholar 

  18. Kumaran J, MacKenzie CR, Arbabi-Ghahroudi M (2012) Semiautomated panning of naive camelidae libraries and selection of single-domain antibodies against peptide antigens. Methods Mol Biol 911:105–124

    CAS  PubMed  Google Scholar 

  19. Baral TN, MacKenzie R, Arbabi Ghahroudi M (2013) Single-domain antibodies and their utility. Current Protoc Immunol 103:Unit 2 17

    Google Scholar 

  20. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432

    Article  CAS  PubMed  Google Scholar 

  21. Scholle MD, Collart FR, Kay BK (2004) In vivo biotinylated proteins as targets for phage-display selection experiments. Protein Expr Purif 37:243–252

    Article  CAS  PubMed  Google Scholar 

  22. Wilkins MR, Gasteiger E, Bairoch A et al (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  23. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Arbabi-Ghahroudi M, To R, Gaudette N et al (2009) Aggregation-resistant VHs selected by in vitro evolution tend to have disulfide-bonded loops and acidic isoelectric points. Protein Eng Des Sel 22:59–66

    Google Scholar 

Download references

Acknowledgements

This is National Research Council of Canada Publication 53286.

We gratefully acknowledge the excellent technical assistance of Henk van Faassen, Mary Foss and Shalini Raphael. We thank Dr. Maureen O’Connor for her help and support of the research work. This work was supported by the National Research Council Canada Genomics & Health Initiative. Norah A. Alturki was supported by the King Saud University Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Arbabi-Ghahroudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alturki, N.A., Henry, K.A., MacKenzie, C.R., Arbabi-Ghahroudi, M. (2015). Isolation of Camelid Single-Domain Antibodies Against Native Proteins Using Recombinant Multivalent Peptide Ligands. In: Houen, G. (eds) Peptide Antibodies. Methods in Molecular Biology, vol 1348. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2999-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2999-3_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2998-6

  • Online ISBN: 978-1-4939-2999-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation