ADARs: Viruses and Innate Immunity

  • Chapter
  • First Online:
Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 353))

Abstract

Double-stranded RNA (dsRNA) functions both as a substrate of ADARs and also as a molecular trigger of innate immune responses. ADARs, adenosine deaminases that act on RNA, catalyze the deamination of adenosine (A) to produce inosine (I) in dsRNA. ADARs thereby can destablize RNA structures, because the generated I:U mismatch pairs are less stable than A:U base pairs. Additionally, I is read as G instead of A by ribosomes during translation and by viral RNA-dependent RNA polymerases during RNA replication. Members of several virus families have the capacity to produce dsRNA during viral genome transcription and replication. Sequence changes (A–G, and U–C) characteristic of A–I editing can occur during virus growth and persistence. Foreign viral dsRNA also mediates both the induction and the action of interferons. In this chapter our current understanding of the role and significance of ADARs in the context of innate immunity, and as determinants of the outcome of viral infection, will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amexis G, Rubin S, Chizhikov V, Pelloquin F, Carbone K, Chumakov K (2002) Sequence diversity of Jeryl Lynn strain of mumps virus: quantitative mutant analysis for vaccine quality control. Virology 300:171–179

    Article  PubMed  CAS  Google Scholar 

  • Appel N, Schaller T, Penin F, Bartenschlager R (2006) From structure to function: new insights into hepatitis C virus RNA replication. J Biol Chem 281:9833–9836

    Article  PubMed  CAS  Google Scholar 

  • Arnaud N, Dabo S, Maillard P, Budkowska A, Kalliampakou KI, Mavromara P, Garcin D, Hugon J, Gatignol A, Akazawa D, Wakita T, Meurs EF (2010) Hepatitis C virus controls interferon production through PKR activation. PLoS ONE 5:e10575. doi:10.1371

    Article  PubMed  CAS  Google Scholar 

  • Baczko K, Lampe J, Liebert UG, Brinckmann U, ter Meulen V, Pardowitz I, Budka H, Cosby SL, Isserte S, Rima BK (1993) Clonal expansion of hypermutated measles virus in a SSPE brain. Virology 197:188–195

    Article  PubMed  CAS  Google Scholar 

  • Barraud P, Allain FH-T (2011) ADAR Proteins: Double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 353

    Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H (1987) A developmentally regulated activity that unwinds RNA duplexes. Cell 48:607–613

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Benjamin TL (2001) Polyoma virus: old findings and new challenges. Virology 289:167–173

    Article  PubMed  CAS  Google Scholar 

  • Billecocq A, Spiegel M, Vialat P, Kohl A, Weber F, Bouloy M, Haller O (2004) NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 78:9798–9806

    Article  PubMed  CAS  Google Scholar 

  • Boonyaratanakornkit J, Bartlett E, Schomacker H, Surman S, Akira S, Bae YS, Collins P, Murphy B, Schmidt A (2011) The C proteins of human parainfluenza virus type 1 limit double-stranded RNA accumulation that would otherwise trigger activation of MDA5 and protein kinase R. J Virol 85:1495–1506

    Article  PubMed  CAS  Google Scholar 

  • Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6:975–990

    Article  PubMed  CAS  Google Scholar 

  • Brown BA II, Lowenhaupt K, Wilbert CM, Hanlon EB, Rich A (2000) The zalpha domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proc Natl Acad Sci USA 97:13532–13536

    Article  PubMed  CAS  Google Scholar 

  • Carpenter JA, Keegan LP, Wilfert L, O’Connell MA, Jiggins FM (2009) Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae). BMC Genet 10:75. doi:10.1186/1471-2156-10-75

    Article  PubMed  CAS  Google Scholar 

  • Casey JL (2011) Control of ADAR1 editing of hepatitis delta virus RNAs. Curr Top Microbiol Immunol 353

    Google Scholar 

  • Cattaneo R, Billeter MA (1992) Mutations and A/I hypermutations in measles virus persistent infections. Curr Top Microbiol Immunol 176:63–74

    PubMed  CAS  Google Scholar 

  • Cattaneo R, Schmid A, Rebmann G, Baczko K, ter Meulen V, Bellini WJ, Rozenblatt S, Billeter MA (1986) Accumulated measles virus mutations in a case of subacute sclerosing panencephalitis: interrupted matrix protein reading frame and transcription alteration. Virology 154:97–107

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo R, Schmid A, Eschle D, Baczko L, ter Meulen V, Billeter MA (1988) Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A, Jha BK, Silverman RH (2011) New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 31:49–57

    Article  PubMed  CAS  Google Scholar 

  • Chambers P, Rima BK, Duprex WP (2009) Molecular differences between two Jeryl Lynn mumps virus vaccine component strains, JL5 and JL2. J. Gen Virol 90:2973–2981

    Article  PubMed  CAS  Google Scholar 

  • Chiu YL, Greene WC (2008) The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 26:317–353

    Article  PubMed  CAS  Google Scholar 

  • Clerzius G, Gélinas JF, Daher A, Bonnet M, Meurs EF, Gatignol A (2009) ADAR1 interacts with PKR during human immunodeficiency virus infection of lymphocytes and contributes to viral replication. J Virol 83:10119–10128

    Article  PubMed  CAS  Google Scholar 

  • Colby C, Morgan MJ (1971) Interferon induction and action. Annu Rev Microbiol 25:333–360

    Article  PubMed  CAS  Google Scholar 

  • Damania B (2004) Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol 2:656–668

    Article  PubMed  CAS  Google Scholar 

  • Desterro JM, Keegan LP, Lafarga M, Berciano MT, O’Connell M, Carmo-Fonseca M (2003) Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci 116:1805–1818

    Article  PubMed  CAS  Google Scholar 

  • Doria M, Neri F, Gallo A, Farace MG, Michienzi A (2009) Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 37:5848–5858

    Article  PubMed  CAS  Google Scholar 

  • Doria M, Tomaselli S, Neri F, Ciafre SA, Farace MG, Michienzi A, Gallo A (2011) The ADAR2 editing enzyme is a novel Hiv-1 proviral factor. J Gen Virol Feb 2 [Epub ahead of print]

    Google Scholar 

  • Emmott E, Wise H, Loucaides EM, Matthews DA, Digard P, Hiscox JA (2010) Quantitative proteomics using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A virus-infected cells. J Proteome Res 9:5335–5345

    Article  PubMed  CAS  Google Scholar 

  • Felder MP, Laugier D, Yatsula B, Dezélée P, Calothy G, Marx M (1994) Functional and biological properties of an avian variant long terminal repeat containing multiple A to G conversions in the U3 sequence. J Virol 68:4759–4767

    PubMed  CAS  Google Scholar 

  • Feng S, Li H, Zhao J, Pervushin K, Lowenhaupt K, Schwartz TU, Dröge P (2011) Alternate rRna secondary structures as regulators of translation. Nat Struct Mol Biol 18:169–176

    Article  PubMed  CAS  Google Scholar 

  • Field AK, Tytell AA, Lampson GP, Hilleman MR (1967) Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc Natl Acad Sci USA 58:1004–1010

    Article  PubMed  CAS  Google Scholar 

  • Fierro-Monti I, Mathews MB (2000) Proteins binding to duplexed RNA: One motif, multiple functions. Trends Biochem Sci 25:241–246

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  PubMed  CAS  Google Scholar 

  • Gandy SZ, Linnstaedt SD, Muralidhar S, Cashman KA, Rosenthal LJ, Casey JL (2007) RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication. J Virol 81:13544–13551

    Article  PubMed  CAS  Google Scholar 

  • Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203–217

    Article  PubMed  CAS  Google Scholar 

  • Garaigorta U, Chisari FV (2009) Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation. Cell Host Microbe 6:513–522

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sastre A (2011) 2 methylate or not 2 methylate: viral evasion of the type I interferon response. Nat Immunol 12:114–115

    Article  PubMed  CAS  Google Scholar 

  • George CX, Samuel CE (1999a) Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci USA 96:4621–4626

    Article  PubMed  CAS  Google Scholar 

  • George CX, Samuel CE (1999b) Characterization of the 5′-flanking region of the human RNA- specific adenosine deaminase ADAR1 gene and identification of an interferon-inducible ADAR1 promoter. Gene 229:203–213

    Article  PubMed  CAS  Google Scholar 

  • George CX, Wagner MV, Samuel CE (2005) Expression of interferon-inducible RNA adenosine deaminase ADAR1 during pathogen infection and mouse embryo development involves tissue-selective promoter utilization and alternative splicing. J Biol Chem 280:15020–15028

    Article  PubMed  CAS  Google Scholar 

  • George CX, Das S, Samuel CE (2008) Organization of the mouse RNA-specific adenosine deaminase Adar1 gene 5′-region and demonstration of STAT1-independent, STAT2-dependent transcriptional activation by interferon. Virology 380:338–343

    Article  PubMed  CAS  Google Scholar 

  • George CX, Gan Z, Liu Y, Samuel CE (2011) Adenosine deaminases acting on RNA (ADARs), RNA editing and interferon action. J Interferon Cytokine Res 31:99–117

    Article  PubMed  CAS  Google Scholar 

  • Gomatos PJ, Tamm I (1963) The secondary structure of reovirus RNA. Proc Natl Acad Sci USA 49:707–714

    Article  PubMed  CAS  Google Scholar 

  • Goodman RA, Macbeth MR, Beal PA (2011) ADAR Proteins: Structure and Catalytic Activity. Curr Top Microbiol Immunol 353

    Google Scholar 

  • Grande-Pérez A, Sierra S, Castro MG, Domingo E, Lowenstein PR (2002) Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc Natl Acad Sci USA 99:12938–12943

    Article  PubMed  CAS  Google Scholar 

  • Gu R, Zhang Z, Decerbo JN, Carmichael GG (2009) Gene regulation by sense-antisense overlap of polyadenylation signals. RNA 15:1154–1163

    Article  PubMed  CAS  Google Scholar 

  • Habjan M, Pichlmair A, Elliott RM, Overby AK, Glatter T, Gstaiger M, Superti-Furga G, Unge H, Weber F (2009) NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase. J Virol 83:4365–4375

    Article  PubMed  CAS  Google Scholar 

  • Hajjar AM, Linial ML (1995) Modification of retroviral RNA by double-stranded RNA adenosine deaminase. J Virol 69:5878–5882

    PubMed  CAS  Google Scholar 

  • Hall WW, Lamb RA, Choppin PW (1979) Measles and subacute sclerosing panencephalitis virus proteins: lack of antibodies to the M protein in patients with subacute sclerosing panencephalitis. Proc Natl Acad Sci USA 76:2047–2051

    Article  PubMed  CAS  Google Scholar 

  • Hartner JC, Walkley CR (2011) Roles of ADARs in mouse development. Curr Top Microbiol Immunol 353

    Google Scholar 

  • Hartner JC, Schmittwolf C, Kispert A, Muller AM, Higuchi M, Seeburg PH (2004) Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279:4894–4902

    Article  PubMed  CAS  Google Scholar 

  • Hartner JC, Walkley CR, Lu J, Orkin SH (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10:109–115

    Article  PubMed  CAS  Google Scholar 

  • Hartwig D, Schoeneich L, Greeve J, Schütte C, Dorn I, Kirchner H, Hennig H (2004) Interferon-alpha stimulation of liver cells enhances hepatitis delta virus RNA editing in early infection. J Hepatol 41:667–672

    Article  PubMed  CAS  Google Scholar 

  • Hartwig D, Schütte C, Warnecke J, Dorn I, Hennig H, Kirchner H, Schlenke P (2006) The large form of ADAR 1 is responsible for enhanced hepatitis delta virus RNA editing in interferon-alpha-stimulated host cells. J Viral Hepat 13:150–157

    Article  PubMed  CAS  Google Scholar 

  • Herbert A, Alfken J, Kim YG, Mian IS, Nishikura K, Rich A (1997) A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci USA 94:8421–8426

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Stefan M, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an ampa receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78–81

    Article  PubMed  CAS  Google Scholar 

  • Hundley HA, Bass BL (2010) ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem Sci 35:377–383

    Article  PubMed  CAS  Google Scholar 

  • Hwang Y, Chen EY, Gu ZJ, Chuang WL, Yu ML, Lai MY, Chao YC, Lee CM, Wang JH, Dai CY, Shian-Jy Bey M, Liao YT, Chen PJ, Chen DS (2006) Genetic predisposition of responsiveness to therapy for chronic hepatitis C. Pharmacogenomics 7:697–709

    Article  PubMed  CAS  Google Scholar 

  • Iizasa H, Wulff BE, Alla NR, Maragkakis M, Megraw M, Hatzigeorgiou A, Iwakiri D, Takada K, Wiedmer A, Showe L, Lieberman P, Nishikura K (2010) Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem 285:33358–33370

    Article  PubMed  CAS  Google Scholar 

  • Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147:258–267

    Article  PubMed  CAS  Google Scholar 

  • Joklik WK (1981) Structure and function of the reovirus genome. Microbiol Rev 45:483–501

    PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  • Kawakubo K, Samuel CE (2000) Human RNA-specific adenosine deaminase (ADAR1) gene specifies transcripts that initiate from a constitutively active alternative promoter. Gene 258:165–172

    Article  PubMed  CAS  Google Scholar 

  • Kim U, Wang Y, Sanford T, Zeng Y, Nishikura K (1994) Molecular cloning of c DNA for double-stranded-RNA adenosine-deaminase, a candidate enzyme for nuclear-RNA editing. Proc Natl Acad Sci USA 91:11457–11461

    Article  PubMed  CAS  Google Scholar 

  • Kim YG, Muralinath M, Brandt T, Pearcy M, Hauns K, Lowenhaupt K, Jacobs BL, Rich A (2003) A role for Z-DNA binding in vaccinia virus pathogenesis. Proc Natl Acad Sci USA 100:6974–6979

    Article  PubMed  CAS  Google Scholar 

  • Kitajewski J, Schneider RJ, Safer B, Munemitsu SM, Samuel CE, Thimmappaya B, Shenk T (1986) Adenovirus VAI RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell 45:195–200

    Article  PubMed  CAS  Google Scholar 

  • Knipe D, Howley PM, DE Griffin, Lamb RA, Martin MA, Roizman B, Straus SE (2007) Fields Virology, 5th Ed edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Kuhen KL, Samuel CE (1997) Isolation of the interferon-inducible RNA-dependent protein kinase PKR promoter and identification of a novel DNA element within the 5′-flanking region of human and mouse Pkr genes. Virology 227:119–130

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Carmichael GG (1997) Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci USA 94:3542–3547

    Article  PubMed  CAS  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34

    Article  PubMed  CAS  Google Scholar 

  • Lehmann KA, Bass BL (2000) Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlap** specificities. Biochemistry 39:12875–12884

    Article  PubMed  CAS  Google Scholar 

  • Lei M, Liu Y, Samuel CE (1998) Adenovirus VAI RNA antagonizes the RNA-editing activity of the ADAR adenosine deaminase. Virology 245:188–196

    Article  PubMed  CAS  Google Scholar 

  • Lemon SM (2010) Induction and evasion of innate antiviral responses by hepatitis C virus. J Biol Chem 285:22741–22747

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wolff KC, Samuel CE (2010) RNA adenosine deaminase ADAR1 deficiency leads to increased activation of protein kinase PKR and reduced vesicular stomatitis virus growth following interferon treatment. Virology 396:316–322

    Article  PubMed  CAS  Google Scholar 

  • Liebert UG, Baczko K, Budka H, ter Meulen V (1986) Restricted expression of measles virus proteins in brains from cases of subacute sclerosing panencephalitis. J Genl Virol 67:2435–2444

    Article  CAS  Google Scholar 

  • Liu Z, Carmichael GG (1993) Polyoma virus early-late switch: regulation of late RNA accumulation by DNA replication. Proc Natl Acad Sci USA 90:8494–8498

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Samuel CE (1996) Mechanism of interferon action: Functionally distinct RNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA- specific adenosine deaminase. J Virol 70:1961–1968

    PubMed  CAS  Google Scholar 

  • Liu Z, Batt DB, Carmichael GG (1994) Targeted nuclear antisense RNA mimics natural antisense-induced degradation of polyoma virus early RNA. Proc Natl Acad Sci USA 91:4258–4262

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, George CX, Patterson JB, Samuel CE (1997) Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J Biol Chem 272:419–4428

    Google Scholar 

  • Liu Y, Wolff KC, Jacobs BL, Samuel CE (2001) Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity. Virology 289:378–387

    Article  PubMed  CAS  Google Scholar 

  • Maas S, Gommans WM (2009) Novel exon of mammalian ADAR2 extends open reading frame. PLoS One 4:e4225

    Article  PubMed  CAS  Google Scholar 

  • Maas S, Rich A, Nishikura K (2003) A-to-I RNA editing: Recent news and residual mysteries. J Biol Chem 278:1391–1394

    Article  PubMed  CAS  Google Scholar 

  • Malim MH (2009) APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 364:675–687

    Article  PubMed  CAS  Google Scholar 

  • Martínez I, Melero JA (2002) A model for the generation of multiple A to G transitions in the human respiratory syncytial virus genome: predicted RNA secondary structures as substrates for adenosine deaminases that act on RNA. J Gen Virol 83(Pt 6):1445–1455

    PubMed  Google Scholar 

  • McAllister CS, Toth AM, Zhang P, Devaux P, Cattaneo R, Samuel CE (2010) Mechanisms of protein kinase PKR-mediated amplification of beta interferon induction by C protein-deficient measles virus. J Virol 84:380–386

    Article  PubMed  CAS  Google Scholar 

  • McCormack SJ, Samuel CE (1995) Mechanism of interferon action: RNA-binding activity of full-length and R-domain forms of the RNA-dependent protein kinase PKR–determination of KD values for VAI and TAR RNAs. Virology 206:511–519

    Article  PubMed  CAS  Google Scholar 

  • McCormack SJ, Thomis DC, Samuel CE (1992) Mechanism of interferon action: identification of a RNA binding domain within the N-terminal region of the human RNA-dependent P1/eIF-2 alpha protein kinase. Virology 188:47–56

    Article  PubMed  CAS  Google Scholar 

  • Mesri EA, Cesarman E, Boshoff C (2010) Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer 10:707–719

    Article  PubMed  CAS  Google Scholar 

  • Mittaz L, Scott HS, Rossier C, Seeburg PH, Higuchi M, Antonarakis SE (1997) Cloning of a human RNA editing deaminase (ADARB1) of glutamate receptors that maps to chromosome 21q22.3. Genomics 41:210–217

    Article  PubMed  CAS  Google Scholar 

  • Moss WJ, Griffin DE (2006) Global measles elimination. Nat Rev Microbiol 4:900–908

    Article  PubMed  CAS  Google Scholar 

  • Murphy DG, Dimock K, Kang CY (1991) Numerous transitions in human parainfluenza virus 3 RNA recovered from persistently infected cells. Virology 181:760–763

    Article  PubMed  CAS  Google Scholar 

  • Nakhaei P, Genin P, Civas A, Hiscott J (2009) Rig-I-like receptors: sensing and responding to RNA virus infection. Semin Immunol 21:215–222

    Article  PubMed  CAS  Google Scholar 

  • Nie Y, Hammond GL, Yang JH (2007) Double-stranded RNA deaminase ADAR1 increases host susceptibility to virus infection. J Virol 81:917–923

    Article  PubMed  CAS  Google Scholar 

  • Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349

    Article  PubMed  CAS  Google Scholar 

  • O’Connell MA, Krause S, Higuchi M, Hsuan JJ, Totty NF, Jenny A, Keller W (1995) Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol 15:1389–1397

    PubMed  Google Scholar 

  • O’Neill LA (2009) DNA makes RNA makes innate immunity. Cell 138:428–430

    Article  PubMed  CAS  Google Scholar 

  • O’Hara P, Nichol S, Horodyski F, Holland J (1984) Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. Cell 36:915–924

    Article  PubMed  Google Scholar 

  • Oldstone MB (2009) Modeling subacute sclerosing panencephalitis in a transgenic mouse system: uncoding pathogenesis of disease and illuminating components of immune control. Curr Top Microbiol Immunol 330:31–54

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MB, Lewicki H, Thomas D, Tishon A, Dales S, Patterson J, Manchester M, Homann D, Naniche D, Holz A (1999) Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell 98:629–640

    Article  PubMed  CAS  Google Scholar 

  • Paro S, Li X, O’Connell MA, Keegan LP (2011) Regulation and Functions of ADAR in Drosophila. Curr Top Microbiol Immunol 353

    Google Scholar 

  • Patterson JB, Samuel CE (1995) Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: Evidence for two forms of the deaminase. Mol Cell Biol 15:5376–5388

    PubMed  CAS  Google Scholar 

  • Patterson JB, Thomis DC, Hans SL, Samuel CE (1995) Mechanism of interferon action - double-stranded RNA-specific adenosine-deaminase from human-cells is inducible by alpha-interferon and gamma-interferon. Virology 210:508–511

    Article  PubMed  CAS  Google Scholar 

  • Patterson JB, Cornu TI, Redwine J, Dales S, Lewicki H, Holz A, Thomas D, Billeter MA, Oldstone MB (2001) Evidence that the hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. Virology 291:215–225

    Article  PubMed  CAS  Google Scholar 

  • Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–822

    Google Scholar 

  • Perez JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45:529–538

    Article  Google Scholar 

  • Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  PubMed  CAS  Google Scholar 

  • Phuphuakrat A, Kraiwong R, Boonarkart C, Lauhakirti D, Lee TH, Auewarakul P (2008) Double-stranded RNA adenosine deaminases enhance expression of human immunodeficiency virus type 1 proteins. J Virol 82:10864–10872

    Article  PubMed  CAS  Google Scholar 

  • Pindel A, Sadler A (2011) The role of protein kinase R in the interferon response. J Interferon Cytokine Res 31:59–70

    Article  PubMed  CAS  Google Scholar 

  • Placido D, Brown BA, Lowenhaupt K, Rich A, Athanasiadis A (2007) A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1. Struct 15:395–404

    Article  CAS  Google Scholar 

  • Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J (2001) Crm1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol 21:7862–7871

    Article  PubMed  CAS  Google Scholar 

  • Pugnale P, Pazienza V, Guilloux K, Negro F (2009) Hepatitis delta virus inhibits alpha interferon signaling. Hepatol 49:398–406

    Article  CAS  Google Scholar 

  • Raitskin O, Cho DS, Sperling J, Nishikura K, Sperline R (2001) RNA editing activity is associated with spliceing factors in InRNP particles: The nuclear pre-mRNA processing machinery. Proc Natl Acad Sci U S A 98:6571–6576

    Article  PubMed  CAS  Google Scholar 

  • Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47

    Article  PubMed  CAS  Google Scholar 

  • Rebagliati MR, Melton DA (1987) Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48:599–605

    Article  PubMed  CAS  Google Scholar 

  • Rueda P, García-Barreno B, Melero JA (1994) Loss of conserved cysteine residues in the attachment (G) glycoprotein of two human respiratory syncytial virus escape mutants that contain multiple A–G substitutions (hypermutations). Virology 198:653–662

    Article  PubMed  CAS  Google Scholar 

  • Rueter SM, Dawson RT, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75–80

    Article  PubMed  CAS  Google Scholar 

  • Sadler AJ, Williams BR (2007) Structure and function of the protein kinase R. Curr Top Microbiol Immunol 316:253–292

    Article  PubMed  CAS  Google Scholar 

  • Samuel CE (1979) Mechanism of interferon action: Phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase processing site specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc Natl Acad Sci USA 76:600–604

    Article  PubMed  CAS  Google Scholar 

  • Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809

    Article  PubMed  CAS  Google Scholar 

  • Samuel CE (2007) Innate immunity minireview series: making biochemical sense of nucleic acid sensors that trigger antiviral innate immunity. J Biol Chem 282:15313–15314

    Article  PubMed  CAS  Google Scholar 

  • Samuel CE (2010a) Thematic minireview series: toward a structural basis for understanding influenze virus-host cell interactions. J Biol Chem 285:28399–28401

    Article  PubMed  CAS  Google Scholar 

  • Samuel CE (2010b) Thematic minireview series: elucidating hepatitis C virus-host interactions at the biochemical level. J Biol Chem 285:22723–22724

    Article  PubMed  CAS  Google Scholar 

  • Samuel CE (2011) Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 411:180–193

    Article  PubMed  CAS  Google Scholar 

  • Sansam CL, Wells KS, Emeson RB (2003) Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc Natl Acad Sci USA 100:14018–14023

    Article  PubMed  CAS  Google Scholar 

  • Sarkis PT, Ying S, Xu R, Yu XF (2006) STAT1-independent call type-specific regulation of antiviral APOBEC3G by IFN-alpha. J Immunol 177:4530–4540

    PubMed  CAS  Google Scholar 

  • Scadden AD (2005) The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat Struct Mol Biol 12:489–496

    Article  PubMed  CAS  Google Scholar 

  • Scadden AD, O’Connell MA (2005) Cleavage of dsRNAs hyper-edited by ADARs occurs at preferred editing sites. Nucleic Acids Res 33:5954–5964

    Article  PubMed  CAS  Google Scholar 

  • Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282:20059–20063

    Article  PubMed  CAS  Google Scholar 

  • Schmid A, Spielhofer P, Cattaneo R, Baczko K, ter Meulen V, Billeter MA (1992) Subacute sclerosing panencephalitis is typically characterized by alterations in the fusion protein cytoplasmic domain of the persisting measles virus. Virology 188:910–915

    Article  PubMed  CAS  Google Scholar 

  • Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A (1999) Crystal structure of the Z domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284:1841–1845

    Article  PubMed  CAS  Google Scholar 

  • Sen A, Pruijssers AJ, Dermody TS, Garcia-Sastre A, Greenberg HB (2011) The early interferon response to rotavirus is regulated by PKR and depends on MAVS/IPS-1, RIG-I, MDA-5, and IRF3. J Virol 85:3717–3732

    Google Scholar 

  • Serra MJ, Smolter PE, Westhof E (2004) Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res 32:1824–1828

    Article  PubMed  CAS  Google Scholar 

  • Sharmeen L, Bass B, Sonenberg N, Weintraub H, Groudine M (1991) Tat-dependent adenosine-to-inosine modification of wild-type transactivation response RNA. Proc Natl Acad Sci USA 88:8096–8100

    Article  PubMed  CAS  Google Scholar 

  • Shtrichman R, Heithoff DM, Mahan MJ, Samuel CE (2002) Tissue selectivity of interferon-stimulated gene expression in mice infected with dam(+) versus dam(-) Salmonella enterica Serovar typhimurium strains. Infect Immun 70:5579–5588

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Kesterson RA, Jacobs MM, Joers JM, Gore JC, Emeson RB (2007) Hyperphagia-mediated obesity in transgenic mice misexpressing the RNA-editing enzyme ADAR2. J Biol Chem 282:22448–22459

    Article  PubMed  CAS  Google Scholar 

  • Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141

    Article  PubMed  CAS  Google Scholar 

  • Slavov D, Gardiner K (2002) Phylogenetic comparison of the pre-mRNA adenosine deaminase ADAR2 genes and transcripts: Conservation and diversity in editing site sequence and alternative splicing patterns. Gene 299:83–94

    Article  PubMed  CAS  Google Scholar 

  • Stewart WE (1979) The interferon system. Springer-Verlag. New York

    Google Scholar 

  • Strehblow A, Hallegger M, Jantsch MF (2002) Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Mol Biol Cell 13:3822–3835

    Article  PubMed  CAS  Google Scholar 

  • Strobel SA, Cech TR, Usman N, Beigelman L (1994) The 2, 6-diaminopurine riboside.5-methylisocytidine wobble base pair: an isoenergetic substitution for the study of G.U pairs in RNA. Biochemistry 33:13824–13835

    Article  PubMed  CAS  Google Scholar 

  • Suspène R, Renard M, Henry M, Guétard D, Puyraimond-Zemmour D, Billecocq A, Bouloy M, Tangy F, Vartanian JP, Wain-Hobson S (2008) Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs. Nucleic Acids Res 36(12):e72. doi: 10.1093/nar/gkn295

    Article  PubMed  CAS  Google Scholar 

  • Suspène R, Petit V, Puyraimond-Zemmour D, Aynaud MM, Henry M, Guétard D, Rusniok C, Wain-Hobson S, Vartanian JP (2011) Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines. J Virol 85:2458–2462

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Samuel CE (1994) Mechanism of interferon action: structure of the mouse PKR gene encoding the interferon-inducible RNA-dependent protein kinase. Proc Natl Acad Sci U S A 91:7995–7999

    Article  PubMed  CAS  Google Scholar 

  • Taylor JM (2003) Replication of human hepatitis delta virus: Recent developments. Trends Microbiol 11:185–190

    Article  PubMed  CAS  Google Scholar 

  • Taylor DR, Puig M, Darnell MER, Mihalik K, Feinstone SM (2005) New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1. J Virol 79:6291–6298

    Article  PubMed  CAS  Google Scholar 

  • tenOever BR, Ng SL, Chua MA, McWhirter SM, García-Sastre A, Maniatis T (2007) Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science 315:1274–1278

    Article  PubMed  CAS  Google Scholar 

  • Toth AM, Zhang P, Das S, George CX, Samuel CE (2006) Interferon action and the double-stranded RNA-dependent enzymes ADAR1 adenosine deaminase and PKR protein kinase. Prog Nucleic Acid Res Mol Biol 81:369–434

    Article  PubMed  CAS  Google Scholar 

  • Toth AM, Li Z, Cattaneo R, Samuel CE (2009) RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR. J Biol Chem 284:29350–29356

    Article  PubMed  CAS  Google Scholar 

  • Tytell AA, Lampson GP, Field AK, Hilleman MR (1967) Inducers of interferon and host resistance. 3. Double-stranded RNA from reovirus type 3 virions (reo 3-RNA). Proc Natl Acad Sci USA 58:1719–1722

    Article  PubMed  CAS  Google Scholar 

  • Uematsu S, Akira S (2007) Toll-like receptors and Type I interferons. J Biol Chem 282:15319–15323

    Article  PubMed  CAS  Google Scholar 

  • Vitali P, Scadden AD (2010) Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat Struct Mol Biol 17:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Wagner RW, Smith JE, Cooperman BS, Nishikura K (1989) A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci USA 86:2647–2651

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, Nishikura K (2004) Stress-induced apoptosis associated with null mutation of Adar1 RNA editing deaminase gene. J Biol Chem 279:4952–4961

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Samuel CE (2009) Adenosine deaminase ADAR1 increases gene expression at the translational level by decreasing protein kinase PKR-dependent eIF-2alpha phosphorylation. J Mol Biol 393:777–787

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zeng Y, Murray JM, Nishikura K (1995) Genomic organization and chromosomal location of the human dsRNA adenosine deaminase gene: The enzyme for glutamate-activated ion channel RNA editing. J Mol Biol 254:184–195

    Article  PubMed  CAS  Google Scholar 

  • Ward SV, George CX, Welch JJ, Liou LY, Hahm B, Lewicki H, de la Torre JC, Samuel CE, Oldstone MB (2011) RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc Natl Acad Sci U S A 108:331–336

    Article  PubMed  CAS  Google Scholar 

  • Weier HUG, George CX, Greulich KM, Samuel CE (1995) The interferon-inducible, double-stranded RNA-specific adenosine deaminase gene (DSRAD) maps to human chromosome 1q21.1–21.2. Genomics 30:372–375

    Article  PubMed  CAS  Google Scholar 

  • Weier HUG, George CX, Lersch RA, Breitweser S, Cheng JF, Samuel CE (2000) Assignment of the RNA-specific adenosine deaminase gene (Adar) to mouse chromosome 3f2 by in situ hybridization. Cytogenet. Cell Genet 89:214–215

    Article  PubMed  CAS  Google Scholar 

  • Welzel TM, Morgan TR, Bonkovsky HL, Naishadham D, Pfeiffer RM, Wright EC, Hutchinson AA, Crenshaw AT, Bashirova A, Carrington M, Dotrang M, Sterling RK, Lindsay KL, Fontana RJ, Lee WM, Di Bisceglie AM, Ghany MG, Gretch DR, Chanock SJ, Chung RT, O’Brien TR HALT-C, Group Trial (2009) Variants in interferon-alpha pathway genes and response to pegylated interferon-Alpha2a plus ribavirin for treatment of chronic hepatitis C virus infection in the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology 49(6):1847–1858

    Article  PubMed  CAS  Google Scholar 

  • Wong TC, Ayata M, Ueda S, Hirano A (1991) Role of biased hypermutation in evolution of subacute sclerosing panencephalitis virus from progenitor acute measles virus. J Virol 65:2191–2199

    PubMed  CAS  Google Scholar 

  • Wong TC, Ayata M, Hirano A, Yoshikawa Y, Tsuruoka H, Yamanouchi K (1994) Generalized and localized biased hypermutation affecting the matrix gene of a measles virus strain that causes subacute sclerosing panencephalitis. J Virol 63:5464–5468

    Google Scholar 

  • Wong SK, Sato S, Lazinski DW (2003) Elevated activity of the large form of ADAR1 in vivo: very efficient RNA editing occurs in the cytoplasm. RNA 9:586–598

    Article  PubMed  CAS  Google Scholar 

  • Wulff B-E, Nishikura K (2011) Modulation of Micro RNA Expression and Function by ADARs. Curr Top Microbiol Immunol 353

    Google Scholar 

  • XuFeng R, Boyer MJ, Shen H, Li Y, Yu H, Gao Y, Yang Q, Wang Q, Cheng T (2009) ADAR1 is required for hematopoietic progenitor cell survival via RNA editing. Proc Natl Acad Sci U S A 106:17763–17768

    Article  PubMed  Google Scholar 

  • Yang JH, Nie Y, Zhao Q, Su Y, Pypaert M, Su H, Rabinovici R (2003) Intracellular localization of differentially regulated RNA-specific adenosine deaminase isoforms in inflammation. J Biol Chem 278:45833–45842

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Zhao L, Gan Z, He Z, Xu J, Gao X, Wang X, Han W, Chen L, Xu T, Li W, Liu Y (2010) Deficiency in RNA editing enzyme ADAR2 impairs regulated exocytosis. FASEB J. 24:3720–3732

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Fujita T (2007) Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem 282:15315–15318

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Fujita T (2010) Recognition of viral nucleic acids in innate immunity. Rev Med Virol 20:4–22

    Article  PubMed  CAS  Google Scholar 

  • You S, Murray CL, Luna JM, Rice CM (2011) End game: Getting the most out of microRNAs. Proc Natl Acad Sci U S A 108:3101–3102

    Article  PubMed  CAS  Google Scholar 

  • Zahn RC, Schelp I, Utermöhlen O, von Laer D (2007) A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus. J Virol 81:457–464

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Jacobs BL, Samuel CE (2008) Loss of protein kinase PKR expression in human HeLa cells complements the vaccinia virus E3L deletion mutant phenotype by restoration of viral protein synthesis. J Virol 82:840–848

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health, Research Grants AI-12520 and AI-20611. I would like to thank Dr. Cyril George and Dr. Christian Pfaller for their helpful comments and the present and past members of the Samuel Laboratory together with the many investigators in the ADAR and innate immunity fields whose collective studies made this chapter possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Samuel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Samuel, C.E. (2011). ADARs: Viruses and Innate Immunity. In: Samuel, C. (eds) Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing. Current Topics in Microbiology and Immunology, vol 353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_148

Download citation

Publish with us

Policies and ethics

Navigation