Modeling Subacute Sclerosing Panencephalitis in a Transgenic Mouse System: Uncoding Pathogenesis of Disease and Illuminating Components of Immune Control

  • Chapter
Measles

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 330))

  • 2860 Accesses

Subacute sclerosing panencephalitis (SSPE) is a chronic neurodegenera-tive disease of the central nervous system (CNS) that afflicts eight to 20 individuals per one million of those who become infected with measles virus (MV). The six cardinal elements of SSPE are: (1) progressive fatal CNS disease develo** several years after MV infection begins; (2) replication of MV in neurons; (3) defective nonreplicating MV in the CNS that is recoverable by co-cultivation with permissive tissue culture cells; (4) biased hypermutation of the MV recovered from the CNS with massive A to G (U to C) base changes primarily in the M gene of the virus; (5) high titers of antibody to MV ; and (6) infiltration of B and T cells into the CNS. All these parameters can be mimicked in a transgenic (tg) mouse model that expresses the MV receptor, thus enabling infection of a usually uninfectable mouse in which the immune system is or is not manipulated. Utilization and analysis of such mice have illuminated how chronic measles virus infection of neurons can be initiated and maintained, leading to the SSPE phenotype. Further, an active role in prolonging MV replication while inhibiting its spread in the CNS can be mapped to a direct affect of the biased hypermutations (A to G changes) of the MV M gene in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams JA, Corsellis JAN, Duchen LW (eds) Greenfield's neuropathology, 4th edn. (1984) John Wiley and Son's, New York

    Google Scholar 

  • Amanna IJ, Carlson NE, Slifka MK (2007) Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 357:1903–1915

    Article  PubMed  CAS  Google Scholar 

  • Baczko K, Lampe J, Liebert UG, Brinckmann U, ter Meulen V, Pardowitz I, Budka H, Crosby SL, Isserte S, Rima BK (1993) Clonal expansion of hypermutated measles virus in a SSPE brain. Virology 197:188–195

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H, Cattaneo R, Billeter MA (1989) Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell 56:331

    Article  PubMed  CAS  Google Scholar 

  • Beijerinck MW (1899) Bemerkung zu dem Aufsatz fon Herrn Iwanowsky uber die Mosaikkrankheit der Tabakspflanze. Zentbl Bakt ParasitKde Abt I 5:310–311

    Google Scholar 

  • Blixenkrone-Moller M, Bernard A, Bencsik A, Sixt N, Diamond LE, Logan JS, Wild TF (1998) Role of CD46 in measles virus infection in CD46 transgenic mice. Virology 249:238–248

    Article  PubMed  CAS  Google Scholar 

  • Blumberg RW, Cassady HA (1947) Effect of measles on nephrotic syndrome. Am J Dis Child 63:151

    Google Scholar 

  • Bouteille M, Fontaine C, Vedrenne CL, Delarue J (1965) Sur un cas d'encéphalite subaigüe a inclusions. Étude anatomoclinique et ultrastructurale. Rev Neurol 113:454–458

    Google Scholar 

  • Burnet FM (1968) Measles as an index of immunologic function. Lancet ii:610

    Article  Google Scholar 

  • Campbell H, Andrews N, Brown KE, Miller E (2007) Review of the effect of measles vaccination on the epidemiology of SSPE. Int J Epidemiol 36:1334–1348

    Article  PubMed  CAS  Google Scholar 

  • Carsillo T, Traylor Z, Choi C, Niewiesk S, Oglesbee M (2006) hsp72, a host determinant of measles virus neurovirulence. J Virol 80:11031–11039

    Article  PubMed  CAS  Google Scholar 

  • Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J, Aguzzi A, Billeter MA, Cattaneo R (1998) A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17:3899–3908

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo R, Billeter MA (1992) Mutations and A/I hypermutations in measles virus persistent infections. Curr Topics Microbiol Immunol 176:63–74

    CAS  Google Scholar 

  • Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter MA (1988) Biased hypermuta-tion and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265

    Article  PubMed  CAS  Google Scholar 

  • Cianchetti C, Marrosu MG, Manconi PE, Loi M, Cao A (1983) Subacute sclerosing panencepha-litis in only one of identical twins. Case report with study of cell-mediated immunity. Eur Neurol 22:428–432

    Article  PubMed  CAS  Google Scholar 

  • Connolly JH, Allen IV, Hurwitz LJ, Millar JHD (1967) Measles-virus antibody and antigen in subacute sclerosing panencephalitis. Lancet 1:542–544

    Article  PubMed  CAS  Google Scholar 

  • Coulter JB, Balch N, Best PV (1979) Subacute sclerosing panencephalitis after drug-induced immunosuppression. Arch Dis Child 54:640–642

    PubMed  CAS  Google Scholar 

  • Dawson JR Jr (1933) Cellular inclusions in cerebral lesions of lethargic encephalitis. Am J Pathol 9:7–15

    PubMed  Google Scholar 

  • Dhib-Jalbut S, Haddad FS (1984) Subacute sclerosing panencephalitis in one member of identical twins. Neuropediatrics 15:49–51

    Article  PubMed  CAS  Google Scholar 

  • Enders JF, Peebles TC (1954) Propagation in tissue culture of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med 86:277–286

    PubMed  CAS  Google Scholar 

  • Enders JF, Katz SL, Milovanovic MV, Holloway A (1960) Studies on an attenuated measles-virus vaccine. 1. Development and preparation of the vaccine: techniques for assay of effects of vaccination. N Engl J Med 263:153–159

    PubMed  CAS  Google Scholar 

  • Fenner F (1974) The biology of animal viruses. Academic Press, New York

    Google Scholar 

  • Fu**ami RS, Oldstone MB (1979) Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature 279:529–530

    Article  PubMed  CAS  Google Scholar 

  • Fu**ami RS, Oldstone MB (1980) Alterations in expression of measles virus polypeptides by antibody: molecular events in antibody-induced antigenic modulation. J Immunol 125: 78–85

    PubMed  CAS  Google Scholar 

  • Fu**ami RS, Oldstone MB (1983) Antigenic modulation: a mechanism of viral persistence. Prog Brain Res 59:105–111

    Article  PubMed  CAS  Google Scholar 

  • Fu**ami RS, Norrby E, Oldstone MB (1984) Antigenic modulation induced by monoclonal antibodies: antibodies to measles virus hemagglutinin alters expression of other viral polypeptides in infected cells. J Immunol 132:2618–2621

    PubMed  CAS  Google Scholar 

  • Fukuya H, Ohfu M, Tomoda Y, Nibu K, Ichiki S, Midsudome A (1992) A case of subacute scleros-ing panencephalitis develo** 8 years after immunosuppressive treatment for acute lym-phocytic leukemia. No To Hattatsu 24:60–64

    PubMed  CAS  Google Scholar 

  • Gascon GG (2003) Randomized treatment study of inosiplex versus combined inosiplex and intraventricular interferon-alpha in subacute sclerosing panencephalitis (SSPE): international multicenter study. J Child Neurol 18:819–827

    Article  PubMed  Google Scholar 

  • Go EP, Wikoff WR, Shen Z, O'Maille G, Morita H, Conrads TP, Nordstrom A, Trauger SA, Uritboonthai W, Lucas DA, Chan KC, Veenstra TD, Lewicki H, Oldstone MB, Schneemann A, Siuzdak G (2006) Mass spectrometry reveals specific and global molecular transformations during viral infection. J Proteome Res 5:2405–2416

    Article  PubMed  CAS  Google Scholar 

  • Goldberger J, Anderson JF (1911) An experimental demonstration of the presence of the virus of measles in the mixed buccal and nasal secretions. J Am Med Assoc 57:476–478

    Google Scholar 

  • Griffin DE (2007) Measles Virus. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams Wilkins, Philadelphia, pp 1551–1585

    Google Scholar 

  • Hahm B, Arbour N, Naniche D, Homann D, Manchester M, Oldstone MB (2003) Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human ignaling lymphocyte activation molecule. J Virol 77:3505–3515

    Article  PubMed  CAS  Google Scholar 

  • Hahm B, Arbour N, Oldstone MB (2004) Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology 323:292–302

    Article  PubMed  CAS  Google Scholar 

  • Homann D, Teyton L, Oldstone MBA (2001) Differential regulation of antiviral T-cell immunity results in stable CD8 + but declining CD4 + T-cell memory. Nature Med 7:913–919

    Article  PubMed  CAS  Google Scholar 

  • Horta-Barbosa L, Fuccillo DA, Sever JL, Zeman W (1969) Subacute sclerosing panencephalitis: isolation of measles virus from a brain biopsy. Nature 221:974

    Article  PubMed  CAS  Google Scholar 

  • Houff SA, Madden DL, Sever JL (1979) Subacute sclerosing panencephalitis in only one of identical twins. A seven-year follow-up. Arch Neurol 36:854–856

    PubMed  CAS  Google Scholar 

  • Ivanovski DI (1899) Ueber die Mosaikkrankheit der Tabakspflanze. Zentbl Bakt ParasitKde Abt II 5:250–254

    Google Scholar 

  • Joseph BS, Oldstone MB (1974) Antibody-induced redistribution of measles virus antigens on the cell surface. J Immunol 113:1205–1209

    PubMed  CAS  Google Scholar 

  • Joseph BS, Oldstone MB (1975) Immunologic injury in measles virus infection. II. Suppression of immune injury through antigenic modulation. J Exp Med 142:864–876

    Article  PubMed  CAS  Google Scholar 

  • Katz SL (1965) Immunization of children with live attenuated measles vaccines: five years of experience. Arch Gesamte Virusforsch 16:222–230

    Article  PubMed  CAS  Google Scholar 

  • Katz SL, Enders JF (1959) Immunization of children with live attenuated measles vaccine. Am J Dis Child 85:605–607

    Google Scholar 

  • Kurihara N, Zhou H, Reddy SV, Garcia-Palacios V, Subler MA, Dempster DW, Windle JJ, Roodman GD (2006) Experimental models of Paget's disease. J Bone Miner Res Suppl 2: P55–P57

    Article  Google Scholar 

  • Lawrence DMP, Vaughn MM, Belman AR, Cole JS, Rall GF (1999) Immune-mediated protection of adult but not neonatal mice from neuron-restricted measles virus infection and CNS disease. J Virol 73:1795–1801

    PubMed  CAS  Google Scholar 

  • Liebert UG, Schneider-Schaulies S, Baczko K, ter Meulen V (1990) Antibody-induced restriction of viral gene expression in measles encephalitis in rats. J Virol 64:706–713

    PubMed  CAS  Google Scholar 

  • Liu Y, Samuel CE (1999) Editing of glutamate receptor subunit B pre-mRNA by splice-site variants of interferon-inducible double-stranded RNA-specific adenosine deaminase ADAR1. J Biol Chem 274:5070–5077

    Article  PubMed  CAS  Google Scholar 

  • Loeffler F, Frosch P (1898) Berichte der Kommission zur Erforschung der Maul und Klauenseuche bei dem Institut fur Infektionskrankheiten in Berlin. Zentbl Bakt ParasitKde Abt I 23:371–391

    Google Scholar 

  • McChesney MB, Oldstone MBA (1989) Virus-induced immunosuppression: infections with measles virus and human immunodeficiency virus. Adv Immunol 45:335–380

    Article  PubMed  CAS  Google Scholar 

  • Miller DL (1964) Frequency of complications of measles, 1963. Br Med J 2:75–78

    Article  PubMed  CAS  Google Scholar 

  • Mrkic B, Pavlovic J, Rulicke T, Volpe P, Buchholz CJ, Hourcade D, Atkinson JP, Aguzzi A, Cattaneo R (1998) Measles virus spread and pathogenesis in genetically modified mice. J Virol 72:7420–7427

    PubMed  CAS  Google Scholar 

  • Naniche D, Garenne M, Rae C, Manchester M, Buchta R, Brodine SK, Oldstone MBA (2004) Decrease in measles virus-specific CD4 T cell memory in vaccinated subjects. J Infect Dis 109:1387–1395

    Article  Google Scholar 

  • Ohno S, Ono N, Seki F, Takeda M, Kura S, Tsuzuki T, Yanagi Y (2007) Measles virus infection of SLAM (CD150) knockin mice reproduces tropism and immunosuppression in human infection. J Virol 81:1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA (2002) Biology and pathogenesis of lymphocytic choriomeningitis virus infection. Curr Topics Microbiol Immunol 262:83–117

    Google Scholar 

  • Oldstone MB, Tishon A (1978) Immunologic injury in measles virus infection. IV. Antigenic modulation and abrogation of lymphocyte lysis of virus-infected cells. Clin Immunol Immunopathol 9:55–62

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MB, Fu**ami RS, Lampert PW (1980) Membrane and cytoplasmic changes in virus- infected cells induced by interactions of antiviral antibody with surface viral antigen. Prog Med Virol 26:45–93

    PubMed  CAS  Google Scholar 

  • Oldstone MBA, Blount P, Southern PJ, Lampert PW (1986) Cytoimmunotherapy for persistent virus infection: unique clearance pattern from the central nervous system. Nature 321:239–243

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Lewicki H, Thomas D, Tishon A, Dales S, Patterson J, Manchester M, Homann D, Naniche D, Holz A (1999) Measles virus infection in a transgenic model: virus-induced central nervous system disease and immunosuppression. Cell 98:629–640

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Dales S, Tishon A, Lewicki H, Martin L (2005) A role for dual viral hits in causation of subacute sclerosing panencephalitis. J Exp Med 202:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Osler W (1904) The principles and practice of medicine. New York

    Google Scholar 

  • Patterson JB, Samuel CE (1995) Expression and regulation by interferon of a double-stranded RNA-specific adenosine deaminase from human cells: evidence for two forms of the deami- nase. Mol Cell Biol 15:5376–5388

    PubMed  CAS  Google Scholar 

  • Patterson JB, Cornu TI, Redwine J, Dales S, Lewicki H, Holz A, Thomas D, Billeter MA, Oldstone MB (2001a) Evidence that the hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. Virology 291:215–225

    Article  CAS  Google Scholar 

  • Patterson JB, Manchester M, Oldstone MBA (2001b) Disease model: dissecting the pathogenesis of the measles virus. Trends Mol Med 7:85–88

    Article  CAS  Google Scholar 

  • Patterson JB, Thomis DC, Hans SL, Samuel CE (1995) Mechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons. Virology 210:508–511

    Article  PubMed  CAS  Google Scholar 

  • Payne FE, Baublis JV, Habashi HH (1969) Isolation of measles virus from cell cultures of brain from a patient with subacute sclerosing panencephalitis. N Engl J Med 281:585–589

    PubMed  CAS  Google Scholar 

  • Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C, Christiansen G, Billeter MA (1995) Rescue of measles viruses from cloned DNA. EMBO J 14:5773–5784

    PubMed  CAS  Google Scholar 

  • Rall GF, Manchester M, Daniels LR, Callahan EM, Belman AR, Oldstone MB (1997) A trans-genic mouse model for measles virus infection of the brain. Proc Natl Acad Sci U S A 94:4659–4663

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Schaulies S, Liebert UG, Segev Y, Rager-Zisman B, Wolfson M, ter Meulen V (1992) Antibody-dependent transcriptional regulation of measles virus in persistently infected neural cells. J Virol 66:5534–5541

    PubMed  CAS  Google Scholar 

  • Scott T (1967) Postinfectious and vaccinial encephalitis. Med Clinics North Am 51:701–707

    CAS  Google Scholar 

  • Seeburg PH, Higuchi M, Sprengel R (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Rev 26:217–229

    Article  PubMed  CAS  Google Scholar 

  • Sellin CI, Davoust N, Guillaume V, Baas D, Belin MF, Buckland R, Wild TF, Horvat B (2006) High pathogenicity of wild-type measles virus infection in CD150 (SLAM) transgenic mice. J Virol 80:6420–6429

    Article  PubMed  CAS  Google Scholar 

  • Sevilla N, Kunz S, Holz A, Lewicki H, Homann D, Yamada H, Campbell KP, de la Torre JC, Oldstone MBA (2000) Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp Med 192:1249–1260

    Article  PubMed  CAS  Google Scholar 

  • Slifka MK, Homann D, Tishon A, Pagarigan R, Oldstone MB (2003) Measles virus infection results in suppression of both innate and adaptive immune responses to secondary bacterial infection. J Clin Invest 111:805–810

    PubMed  CAS  Google Scholar 

  • Thorley BR, Milland J, Christiansen D, Lanteri MB, McInnes B, Moeller I, Rivailler P, Horvat B, Rabourdin-Combe C, Gerlier D, McKenzie IF, Loveland BE (1997) Transgenic expression of a CD46 (membrane cofactor protein) minigene: studies of xenotransplantation and measles virus infection. Eur J Immunol 27:726–734

    Article  PubMed  CAS  Google Scholar 

  • Tishon A, Eddleston M, de la Torre JC, Oldstone MB (1993) Cytotoxic T lymphocytes cleanse viral gene products from individually infected neurons and lymphocytes in mice persistently infected with lymphocytic choriomeningitis virus. Virology 197:463–467

    Article  PubMed  CAS  Google Scholar 

  • Tishon A, Lewicki H, Rall G, von Herrath M, Oldstone MB (1995) An essential role for type 1 interferon-gamma in terminating persistent viral infection. Virology 212:244–250

    Article  PubMed  CAS  Google Scholar 

  • Tishon A, Lewicki H, Andaya A, McGavern D, Martin L, Oldstone MBA (2006) CD4 T cell control primary measles virus infection of the CNS: regulation is dependent on combined activity with either CD8 T cells or with B cells: CD4, CD8 or B cells alone are ineffective. Virology 347:234–245

    Article  PubMed  CAS  Google Scholar 

  • van Bogaert L (1945) Une leucoencéphalite sclérosante subaigüe. J Neurol, Neurosurg, Psych 8:101–120

    Article  Google Scholar 

  • von Pirquet C (1908) Das Verhalten del kutanen Tuberkulin-Reaktion Wahrend der Masern. Dtsch Med Wochenschr 34:1297

    Article  Google Scholar 

  • Wagner R (1968) Clements von Pirquet: his life and work. Baltimore, MD

    Google Scholar 

  • Wear DJ, Rapp F (1971) Latent measles virus infection of the hamster central nervous system. J Immunol 107:1593–1598

    PubMed  CAS  Google Scholar 

  • Whitton JL, Oldstone MBA (2001) The immune response to viruses. In: Knipe DM, Howley PM (eds) Fields virology, 4th edn. Lippincott Williams Wilkins, Philadelphia, pp 285–320

    Google Scholar 

  • Wong TC, Ayata M, Hirano A, Yoshikawa Y, Tsuruoka H, Yamanouchi K (1989) Generalized and localized biased hypermutation affecting the matrix gene of a measles virus strain that causes subacute sclerosing panencephalitis. J Virol 63:5464–5468

    PubMed  CAS  Google Scholar 

  • Yannoutsos N, Ijzermans JN, Harkes C, Bonthuis F, Zhou CY, White D, Marquet RL, Grosveld F (1996) A membrane cofactor protein transgenic mouse model for the study of discordant xenograft rejection. Genes Cells 1:409–419

    Article  PubMed  CAS  Google Scholar 

  • Zuniga EI, Liou LY, Mack L, Oldstone MBA (2008) In vivo virus infection inhibits type 1 inter-feron production by plasmacytoid dendritic cells thereby facilitating opportunistic infections. Cell Host Microbe (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. A. Oldstone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oldstone, M.B.A. (2009). Modeling Subacute Sclerosing Panencephalitis in a Transgenic Mouse System: Uncoding Pathogenesis of Disease and Illuminating Components of Immune Control. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70617-5_2

Download citation

Publish with us

Policies and ethics

Navigation