FBAR Gas Sensors

  • Chapter
  • First Online:
Piezoelectric Sensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 18))

  • 120 Accesses

Abstract

Small-sized, high-sensitivity, and low-cost sensors are required for gas-sensing applications because of their critical role in environmental monitoring, clinic diagnosis, process control, and anti-terrorism. Given the rapid developments in micro-fabrication and microelectromechanical system (MEMS) technologies, film bulk acoustic resonator (FBAR) gas sensors have received increased research attention because of their improved working frequency and reliability. This chapter discusses the state-of-the-art and recent developments in FBAR gas sensors. The sensing mechanism and limitations of these sensors are summarized. Recent progress in the development of four major aspects of FBAR gas sensors, namely, FBAR gas sensors using different sensing materials, FBAR gas sensors used in electronic noses, system integration of FBAR gas sensors, and FBAR gas sensors used as micro-GC detectors, is reviewed. The potential future of FBAR sensors used in flexible electronics is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang J, Zhang H, Zhang D et al (2015) Design and fabrication of aluminum nitride Lamb wave resonators towards high figure of merit for intermediate frequency filter applications. J Micromech Microeng 25:035016. https://doi.org/10.1088/0960-1317/25/3/035016

    Article  CAS  Google Scholar 

  2. Liu W, Sun C, Liang J et al (2016) Directly trap** of nanoscale biomolecules using bulk acoustic wave resonators. In: 2016 IEEE sensors. IEEE, Orlando, pp 1–3

    Google Scholar 

  3. He M, Cui W, Zhang H et al (2017) In-line trap** and rotation of bio-particles via 3-D micro-vortices generated by localized ultrahigh frequency acoustic resonators. In: 2017 19th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS). IEEE, Kaohsiung, pp 1789–1792

    Chapter  Google Scholar 

  4. Liu W, Pan S, Zhang H et al (2018) A universal biomolecular concentrator to enhance biomolecular surface binding based on acoustic NEMS resonator. ACS Cent Sci 4:899–908. https://doi.org/10.1021/acscentsci.8b00301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Ning Y, Pan S et al (2021) Mixing during trap** enabled a continuous-flow microfluidic smartphone immunoassay using acoustic streaming. ACS Sens 6:2386–2394. https://doi.org/10.1021/acssensors.1c00602

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Pang W, Zhang H et al (2022) Manipulation of single cells via a stereo acoustic streaming tunnel (SteAST). Microsyst Nanoeng 8:88. https://doi.org/10.1038/s41378-022-00424-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao L, Niu P, Casals E et al (2021) Phase separation of a nonionic surfactant aqueous solution in a standing surface acoustic wave for submicron particle manipulation. Lab Chip 21:660–667. https://doi.org/10.1039/D0LC00986E

    Article  CAS  PubMed  Google Scholar 

  8. Cui W, Mu L, Pang W et al (2019) Rapid purification, enrichment, and detection of biomolecules using bulk acoustic wave resonators. In: 2019 20th international conference on solid-state sensors, actuators and microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, Berlin, pp 621–624

    Chapter  Google Scholar 

  9. Yan X, Qu H, Chang Y et al (2022) A prototype portable instrument employing micro-preconcentrator and FBAR sensor for the detection of chemical warfare agents. Nanotechnol Precision Eng 5:013005. https://doi.org/10.1063/10.0009664

    Article  CAS  Google Scholar 

  10. Zheng Z, Niu P, Wang X et al (2019) Miniature gigahertz acoustic resonator and on-chip electrochemical sensor: an emerging combination for electroanalytical microsystems. Anal Chem 91:15959–15966. https://doi.org/10.1021/acs.analchem.9b04508

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Zhang L, ** K et al (2022) Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. Sci Adv 8:eabn8440. https://doi.org/10.1126/sciadv.abn8440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Z, Tang Z, Liu W et al (2016) Acoustically triggered disassembly of multilayered polyelectrolyte thin films through gigahertz resonators for controlled drug release applications. Micromachines 7:194. https://doi.org/10.3390/mi7110194

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Z, Wang Y, Zhang H et al (2017) Hypersonic poration: a new versatile cell poration method to enhance cellular uptake using a piezoelectric nano-electromechanical device. Small 13:1602962. https://doi.org/10.1002/smll.201602962

    Article  CAS  Google Scholar 

  14. Lu Y, Palanikumar L, Choi ES et al (2019) Hypersound-enhanced intracellular delivery of drug-loaded mesoporous silica nanoparticles in a non-endosomal pathway. ACS Appl Mater Interfaces 11:19734–19742. https://doi.org/10.1021/acsami.9b02447

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Chang Y, Tang N et al (2015) Detection of volatile organic compounds using microfabricated resonator array functionalized with supramolecular monolayers. ACS Appl Mater Interfaces 7:17893–17903. https://doi.org/10.1021/acsami.5b04385

    Article  CAS  PubMed  Google Scholar 

  16. Hu J, Qu H, Chang Y et al (2018) Miniaturized polymer coated film bulk acoustic wave resonator sensor array for quantitative gas chromatographic analysis. Sens Actuators B 274:419–426. https://doi.org/10.1016/j.snb.2018.07.162

    Article  CAS  Google Scholar 

  17. Zhao Y, Yang Q, Chang Y et al (2018) Detection and discrimination of volatile organic compounds using a single multi-resonance mode piezotransduced silicon bulk acoustic wave resonator (PSBAR) as virtual sensor array. Sens Actuators B 254:1191–1199. https://doi.org/10.1016/j.snb.2017.07.206

    Article  CAS  Google Scholar 

  18. Tao J, Chang Y, Liang J et al (2019) Hydrophobin-functionalized film bulk acoustic wave resonators for sensitive and polarity-sensitive sensing of volatile organic compounds. Appl Phys Lett 115:163502. https://doi.org/10.1063/1.5124525

    Article  CAS  Google Scholar 

  19. Zeng G, Wu C, Chang Y et al (2019) Detection and discrimination of volatile organic compounds using a single film bulk acoustic wave resonator with temperature modulation as a multiparameter virtual sensor array. ACS Sens 4:1524–1533. https://doi.org/10.1021/acssensors.8b01678

    Article  CAS  PubMed  Google Scholar 

  20. Yan X, Qu H, Chang Y et al (2020) Surface engineering of metal–organic framework prepared on film bulk acoustic resonator for vapor detection. ACS Appl Mater Interfaces 12:10009–10017. https://doi.org/10.1021/acsami.9b22407

    Article  CAS  PubMed  Google Scholar 

  21. Lu Y, Chang Y, Tang N et al (2015) Concentration-independent fingerprint library of volatile organic compounds based on gas-surface interactions by self-assembled monolayer functionalized film bulk acoustic resonator arrays. In: 2015 IEEE sensors. IEEE, Busan, pp 1–4

    Google Scholar 

  22. Sun X, Chang Y, Qu H et al (2021) A single-chip dual-transduction gas sensor for BTX detection. In: 2021 IEEE sensors. IEEE, Sydney, pp 1–4

    Google Scholar 

  23. Hu J, Qu H, Guo W et al (2019) Film bulk acoustic wave resonator for trace chemical warfare agents simulants detection in micro chromatography. In: 2019 20th international conference on solid-state sensors, actuators and microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, Berlin, pp 45–48

    Chapter  Google Scholar 

  24. Chen D, Wang JJ, Li DH, Xu Y (2011) Hydrogen sensor based on Pd-functionalized film bulk acoustic resonator. Sens Actuators B Chem 159:234–237. https://doi.org/10.1016/j.snb.2011.06.078

    Article  CAS  Google Scholar 

  25. Pang W, Zhao H, Kim ES et al (2012) Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. Lab Chip 12:29–44. https://doi.org/10.1039/C1LC20492K

    Article  CAS  PubMed  Google Scholar 

  26. Dubois M-A, Muller C (2013) Thin-film bulk acoustic wave resonators. In: Enz CC, Kaiser A (eds) MEMS-based circuits and systems for wireless communication. Springer US, Boston, pp 3–28

    Chapter  Google Scholar 

  27. Pang W, Ruby RC, Parker R et al (2008) A temperature-stable film bulk acoustic wave oscillator. IEEE Electron Device Lett 29:315–318. https://doi.org/10.1109/LED.2008.917116

    Article  Google Scholar 

  28. Zhang X, Xu W, Abbaspour-Tamijani A, Chae J (2009) Thermal analysis and characterization of a high Q film bulk acoustic resonator (FBAR) as biosensers in liquids. In: 2009 IEEE 22nd international conference on micro electro mechanical systems. IEEE, Sorrento, pp 939–942

    Chapter  Google Scholar 

  29. Rai S, Su Y, Pang W et al (2010) A digitally compensated 1.5 GHz CMOS/FBAR frequency reference. IEEE Trans Ultrason Ferroelect Freq Contr 57:552–561. https://doi.org/10.1109/TUFFC.2010.1447

    Article  Google Scholar 

  30. Dickherber A, Corso CD, Hunt WD (2008) Optimization and characterization of a ZnO biosensor array. Sens Actuators A Phys 144:7–12. https://doi.org/10.1016/j.sna.2008.01.007

    Article  CAS  Google Scholar 

  31. Grate JW, Patrash SJ, Abraham MH, Du CM (1996) Selective vapor sorption by polymers and cavitands on acoustic wave sensors: is this molecular recognition? Anal Chem 68:913–917. https://doi.org/10.1021/ac950518z

    Article  CAS  PubMed  Google Scholar 

  32. Penza M, Milella E, Anisimkin VI (1998) Monitoring of NH3 gas by LB polypyrrole-based SAW sensor. Sens Actuators B Chem 47:218–224. https://doi.org/10.1016/S0925-4005(98)00026-4

    Article  CAS  Google Scholar 

  33. Gabl R, Green E, Schreiter M et al (2003) Novel integrated FBAR sensors: a universal technology platform for bio- and gas-detection. In: Proceedings of IEEE sensors 2003 (IEEE cat. No.03CH37498). IEEE, Toronto, ON, Canada, pp 1184–1188

    Google Scholar 

  34. Liu J, Zhao Z, Fang Z et al (2020) High-performance FBAR humidity sensor based on the PI film as the multifunctional layer. Sens Actuators B Chem 308:127694. https://doi.org/10.1016/j.snb.2020.127694

    Article  CAS  Google Scholar 

  35. Lee SH, Jung Y, Kim T et al (2015) Polymer coated film bulk acoustic resonator (FBAR) arrays for indoor air quality (IAQ) monitoring. In: 2015 IEEE sensors. IEEE, Busan, pp 1–4

    Google Scholar 

  36. Liu W, Wang J, Yu Y et al (2015) Tuning the resonant frequency of resonators using molecular surface self-assembly approach. ACS Appl Mater Interfaces 7:950–958. https://doi.org/10.1021/am507640g

    Article  CAS  PubMed  Google Scholar 

  37. Ning Y, Zhang M, Lang Y et al (2022) Electronic stethoscope based on triangular cantilever piezoelectric bimorph MEMS transducers. J Microelectromech Syst 31:450–456. https://doi.org/10.1109/JMEMS.2022.3160761

    Article  CAS  Google Scholar 

  38. Johar AK, Varma T, Periasamy C et al (2020) Design, analysis and finite element modeling of solidly mounted film bulk acoustic resonator for gas sensing applications. J Electronic Mater 49:1503–1511. https://doi.org/10.1007/s11664-019-07843-x

    Article  CAS  Google Scholar 

  39. Johar AK, Sharma GK, Kumar TB et al (2021) Optimization of a flexible film bulk acoustic resonator-based toluene gas sensor. J Electronic Mater 50:5387–5395. https://doi.org/10.1007/s11664-021-09059-4

    Article  CAS  Google Scholar 

  40. Guo H, Gao Y, Liu T (2018) A theoretical study of the VOC sensor based on polymer-coated diaphragm embedded with FBAR. Measurement 129:206–210. https://doi.org/10.1016/j.measurement.2018.07.021

    Article  Google Scholar 

  41. Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007–1022. https://doi.org/10.1021/ja01309a011

    Article  CAS  Google Scholar 

  42. Kim E, Choi Y-K, Song J, Lee J (2013) Detection of various self-assembled monolayers by AlN-based film bulk acoustic resonator. Mater Res Bull 48:5076–5079. https://doi.org/10.1016/j.materresbull.2013.05.096

    Article  CAS  Google Scholar 

  43. Chang Y, Tang N, Qu H et al (2016) Detection of volatile organic compounds by self-assembled monolayer coated sensor array with concentration-independent fingerprints. Sci Rep 6:23970. https://doi.org/10.1038/srep23970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Zhang H, Feng Z et al (2016) Chemiresistive and gravimetric dual-mode gas sensor toward target recognition and differentiation. ACS Appl Mater Interfaces 8:21742–21749. https://doi.org/10.1021/acsami.6b02682

    Article  CAS  PubMed  Google Scholar 

  45. Zhao H, Fan S, Chen Y et al (2017) Oxygen plasma-treated graphene oxide surface functionalization for sensitivity enhancement of thin-film piezoelectric acoustic gas sensors. ACS Appl Mater Interfaces 9:40774–40781. https://doi.org/10.1021/acsami.7b09547

    Article  CAS  PubMed  Google Scholar 

  46. Das S, Kim H, Kim K (2009) Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal−organic frameworks. J Am Chem Soc 131:3814–3815. https://doi.org/10.1021/ja808995d

    Article  CAS  PubMed  Google Scholar 

  47. Li T, Kozlowski MT, Doud EA et al (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135:11688–11691. https://doi.org/10.1021/ja403810k

    Article  CAS  PubMed  Google Scholar 

  48. Sun D, Liu W, Qiu M et al (2015) Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chem Commun 51:2056–2059. https://doi.org/10.1039/C4CC09407G

    Article  CAS  Google Scholar 

  49. Liu C, Rosi NL (2017) Ternary gradient metal–organic frameworks. Faraday Discuss 201:163–174. https://doi.org/10.1039/C7FD00045F

    Article  CAS  PubMed  Google Scholar 

  50. Liu C, Zeng C, Luo T-Y et al (2016) Establishing porosity gradients within metal–organic frameworks using partial postsynthetic ligand exchange. J Am Chem Soc 138:12045–12048. https://doi.org/10.1021/jacs.6b07445

    Article  CAS  PubMed  Google Scholar 

  51. Yuan S, Chen Y-P, Qin J-S et al (2016) Linker installation: engineering pore environment with precisely placed functionalities in zirconium MOFs. J Am Chem Soc 138:8912–8919. https://doi.org/10.1021/jacs.6b04501

    Article  CAS  PubMed  Google Scholar 

  52. Yuan S, Lu W, Chen Y-P et al (2015) Sequential linker installation: precise placement of functional groups in multivariate metal–organic frameworks. J Am Chem Soc 137:3177–3180. https://doi.org/10.1021/ja512762r

    Article  CAS  PubMed  Google Scholar 

  53. Dolgopolova EA, Shustova NB (2016) Metal–organic framework photophysics: optoelectronic devices, photoswitches, sensors, and photocatalysts. MRS Bull 41:890–896. https://doi.org/10.1557/mrs.2016.246

    Article  CAS  Google Scholar 

  54. Niknam E, Panahi F, Daneshgar F et al (2018) Metal–organic framework MIL-101(Cr) as an efficient heterogeneous catalyst for clean synthesis of benzoazoles. ACS Omega 3:17135–17144. https://doi.org/10.1021/acsomega.8b02309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chávez AM, Rey A, López J et al (2021) Critical aspects of the stability and catalytic activity of MIL-100(Fe) in different advanced oxidation processes. Sep Purif Technol 255:117660. https://doi.org/10.1016/j.seppur.2020.117660

    Article  CAS  Google Scholar 

  56. López J, Chávez AM, Rey A, Álvarez PM (2021) Insights into the stability and activity of MIL-53(Fe) in solar photocatalytic oxidation processes in water. Catalysts 11:448. https://doi.org/10.3390/catal11040448

    Article  CAS  Google Scholar 

  57. Wang YW, Ao CY, Hui ZP et al (2017) Film bulk acoustic resonator based gas sensor: a sensitive detector for gas chromatography. In: 2017 19th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS). IEEE, Kaohsiung, pp 1471–1474

    Chapter  Google Scholar 

  58. Wang W, Chen D, Wang H et al (2018) Film bulk acoustic formaldehyde sensor with layer-by-layer assembled carbon nanotubes/polyethyleneimine multilayers. J Phys D Appl Phys 51:055104. https://doi.org/10.1088/1361-6463/aaa2af

    Article  CAS  Google Scholar 

  59. Benetti M, Cannatà D, Di Pietrantonio F et al (2005) Microbalance chemical sensor based on thin-film bulk acoustic wave resonators. Appl Phys Lett 87:173504. https://doi.org/10.1063/1.2112187

    Article  CAS  Google Scholar 

  60. Chen D, Xu Y, Wang J, Zhang L (2010) Nerve gas sensor using film bulk acoustic resonator modified with a self-assembled Cu2+/11-mercaptoundecanoic acid bilayer. Sens Actuators B Chem 150:483–486. https://doi.org/10.1016/j.snb.2010.07.047

    Article  CAS  Google Scholar 

  61. Penza M, Aversa P, Cassano G et al (2008) Thin-film bulk-acoustic-resonator gas sensor functionalized with a nanocomposite Langmuir–Blodgett layer of carbon nanotubes. IEEE Trans Electron Devices 55:1237–1243. https://doi.org/10.1109/TED.2008.919283

    Article  CAS  Google Scholar 

  62. Hoffmann R, Schreiter M, Heitmann J (2017) The concept of thin film bulk acoustic resonators as selective CO2 gas sensors. J Sens Sens Syst 6:87–96. https://doi.org/10.5194/jsss-6-87-2017

    Article  Google Scholar 

  63. Song S, Chen D, Wang H et al (2018) Film bulk acoustic formaldehyde sensor with polyethyleneimine-modified single-wall carbon nanotubes as sensitive layer. Sens Actuators B Chem 266:204–212. https://doi.org/10.1016/j.snb.2018.03.129

    Article  CAS  Google Scholar 

  64. Moncrieff RW (1961) An instrument for measuring and classifying odors. J Appl Physiol 16:742–749. https://doi.org/10.1152/jappl.1961.16.4.742

    Article  CAS  PubMed  Google Scholar 

  65. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355. https://doi.org/10.1038/299352a0

    Article  CAS  PubMed  Google Scholar 

  66. Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sens Actuators B Chem 18:210–211. https://doi.org/10.1016/0925-4005(94)87085-3

    Article  Google Scholar 

  67. Zhao Y, Yang Q, Chang Y et al (2016) Detection of volatile organic compounds by high-Q piezotransduced single-crystal silicon bulk acoustic resonator arrays. In: 2016 IEEE sensors. IEEE, Orlando, pp 1–3

    Google Scholar 

  68. Zhao Y, Yang Q, Chang Y et al (2017) Novel gas sensor arrays based on high-Q SAM-modified piezotransduced single-crystal silicon bulk acoustic resonators. Sensors 17:1507. https://doi.org/10.3390/s17071507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rudman PS (1983) Hydriding and dehydriding kinetics. J Less Common Metals 89:93–110. https://doi.org/10.1016/0022-5088(83)90253-9

    Article  CAS  Google Scholar 

  70. Li C-L, Chen Y-F, Liu M-H, Lu C-J (2012) Utilizing diversified properties of monolayer protected gold nano-clusters to construct a hybrid sensor array for organic vapor detection. Sens Actuators B Chem 169:349–359. https://doi.org/10.1016/j.snb.2012.05.009

    Article  CAS  Google Scholar 

  71. Chang Y, Qu H, Duan X et al (2016) VOC detection using multimode E-nose composed of bulk acoustic wave resonator and silicon nanowire field effect transistor array. In: 2016 IEEE sensors. IEEE, Orlando, pp 1–3

    Google Scholar 

  72. Chang Y, Hui Z, Wang X et al (2018) Dual-mode gas sensor composed of a silicon nanoribbon field effect transistor and a bulk acoustic wave resonator: a case study in Freons. Sensors 18:343. https://doi.org/10.3390/s18020343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Potyrailo RA, Bonam RK, Hartley JG et al (2015) Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nat Commun 6:7959. https://doi.org/10.1038/ncomms8959

    Article  PubMed  Google Scholar 

  74. Speller NC, Siraj N, McCarter KS et al (2017) QCM virtual sensor array: vapor identification and molecular weight approximation. Sens Actuators B Chem 246:952–960. https://doi.org/10.1016/j.snb.2017.02.042

    Article  CAS  Google Scholar 

  75. Li D, **e Z, Qu M et al (2021) Virtual sensor array based on Butterworth–Van Dyke equivalent model of QCM for selective detection of volatile organic compounds. ACS Appl Mater Interfaces 13:47043–47051. https://doi.org/10.1021/acsami.1c13046

    Article  CAS  PubMed  Google Scholar 

  76. Speller NC, Siraj N, Regmi BP et al (2015) Rational design of QCM-D virtual sensor arrays based on film thickness, viscoelasticity, and harmonics for vapor discrimination. Anal Chem 87:5156–5166. https://doi.org/10.1021/ac5046824

    Article  CAS  PubMed  Google Scholar 

  77. Gao F, Xuan W, Bermak A et al (2019) Dual transduction on a single sensor for gas identification. Sens Actuators B Chem 278:21–27. https://doi.org/10.1016/j.snb.2018.09.029

    Article  CAS  Google Scholar 

  78. Johnston ML, Kymissis I, Shepard KL (2010) FBAR-CMOS oscillator array for mass-sensing applications. IEEE Sens J 10:1042–1047. https://doi.org/10.1109/JSEN.2010.2042711

    Article  CAS  Google Scholar 

  79. Johnston ML, Edrees H, Kymissis I, Shepard KL (2012) Integrated VOC vapor sensing on FBAR-CMOS array. In: 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS). IEEE, Paris, pp 846–849

    Chapter  Google Scholar 

  80. Edrees HM, Colon-Berrios AR, de Godoy PD et al (2017) Monolithically integrated CMOS-SMR oscillator in 65 nm CMOS using custom MPW die-level fabrication process. J Microelectromech Syst 26:846–858. https://doi.org/10.1109/JMEMS.2017.2691585

    Article  CAS  Google Scholar 

  81. Zhang M, Du L, Fang Z, Zhao Z (2017) A sensitivity-enhanced film bulk acoustic resonator gas sensor with an oscillator circuit and its detection application. Micromachines 8:25. https://doi.org/10.3390/mi8010025

    Article  PubMed Central  Google Scholar 

  82. Duan Y, Chang Y, Liang J et al (2016) Wireless gas sensing based on a passive piezoelectric resonant sensor array through near-field induction. Appl Phys Lett 109:263503. https://doi.org/10.1063/1.4973280

    Article  CAS  Google Scholar 

  83. Gao C, Zhang M, Jiang Y (2019) FlexMEMS-enabled hetero-integration for monolithic FBAR-above-IC oscillators. Nanotechnol Precision Eng 2:105–109. https://doi.org/10.1016/j.npe.2019.08.002

    Article  CAS  Google Scholar 

  84. Gao C, Zhang M, Jiang Y et al (2019) A monolithic FBAR oscillator based on heterogeneous system-on-chip integration. In: 2019 IEEE 32nd international conference on micro electro mechanical systems (MEMS). IEEE, Seoul, pp 895–898

    Chapter  Google Scholar 

  85. Thomas RC, Ricco AJ, Yang HC et al (1996) Chemical class specificity using self-assembled monolayers on SAW devices. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    Google Scholar 

  86. Hu J, Qu H, Pang W, Duan X (2021) In-line detection with microfluidic bulk acoustic wave resonator gas sensor for gas chromatography. Sensors 21:6800. https://doi.org/10.3390/s21206800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun X, Hu J, Yan X et al (2022) On-chip monolithic integrated multimode carbon nanotube sensor for a gas chromatography detector. ACS Sens 7:3049–3056. https://doi.org/10.1021/acssensors.2c01359

    Article  CAS  PubMed  Google Scholar 

  88. Hashimoto K, Tanaka S, Esashi M (2011) Tunable RF SAW/BAW filters: dream or reality? In: 2011 joint conference of the IEEE international frequency control and the European frequency and time forum (FCS) proceedings. IEEE, San Francisco, pp 1–8

    Google Scholar 

  89. Campanella H, Qian Y, Romero CO et al (2021) Monolithic multiband MEMS RF front-end module for 5G mobile. J Microelectromech Syst 30:72–80. https://doi.org/10.1109/JMEMS.2020.3036379

    Article  CAS  Google Scholar 

  90. Aigner R (2005) MEMS in RF-filter applications: thin film bulk-acoustic-wave technology. In: The 13th international conference on solid-state sensors, actuators and microsystems, 2005. Digest of technical papers. TRANSDUCERS ‘05. IEEE, Seoul, Korea, pp 5–8

    Google Scholar 

  91. Fang C-M, Pao S-Y, Lee C-Y et al (2009) Development of 2.4-GHz film bulk acoustic wave filter for wireless communication. JM31 8:021121. https://doi.org/10.1117/1.3094749

    Article  CAS  Google Scholar 

  92. Johnston ML, Kymissis I, Shepard KL (2009) An array of monolithic FBAR-CMOS oscillators for mass-sensing applications. In: TRANSDUCERS 2009–2009 international solid-state sensors, actuators and microsystems conference. IEEE, Denver, pp 1626–1629

    Chapter  Google Scholar 

  93. Nirschl M, Rantala A, Tukkiniemi K et al (2010) CMOS-integrated film bulk acoustic resonators for label-free biosensing. Sensors 10:4180–4193. https://doi.org/10.3390/s100504180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nagaraju M, Gu J, Lingley A et al (2014) A fully integrated wafer-scale sub-mm3 FBAR-based wireless mass sensor. In: 2014 IEEE international frequency control symposium (FCS). IEEE, Taipei, pp 1–5

    Google Scholar 

  95. Jiang Y, Zhao Y, Zhang L et al (2018) Flexible film bulk acoustic wave filters toward radiofrequency wireless communication. Small 14:1703644. https://doi.org/10.1002/smll.201703644

    Article  CAS  Google Scholar 

  96. Zhang L, Jiang Y, Liu B et al (2018) Highly flexible piezoelectric MEMS resonators encapsulated in polymer thin films. In: 2018 IEEE micro electro mechanical systems (MEMS). IEEE, Belfast, pp 170–173

    Chapter  Google Scholar 

  97. Voiculescu I, Nordin AN (2012) Acoustic wave based MEMS devices for biosensing applications. Biosens Bioelectron 33:1–9. https://doi.org/10.1016/j.bios.2011.12.041

    Article  CAS  PubMed  Google Scholar 

  98. Wingqvist G, Bjurström J, Liljeholm L et al (2007) Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sens Actuators B Chem 123:466–473. https://doi.org/10.1016/j.snb.2006.09.028

    Article  CAS  Google Scholar 

  99. Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83:647–704. https://doi.org/10.1103/RevModPhys.83.647

    Article  Google Scholar 

  100. Qu H, Yang Y, Chang Y et al (2017) On-chip integrated multiple microelectromechanical resonators to enable the local heating, mixing and viscosity sensing for chemical reactions in a droplet. Sens Actuators B Chem 248:280–287. https://doi.org/10.1016/j.snb.2017.03.173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Sun, X., Chang, Y., Duan, X., Pang, W. (2023). FBAR Gas Sensors. In: Lieberzeit, P. (eds) Piezoelectric Sensors. Springer Series on Chemical Sensors and Biosensors, vol 18. Springer, Cham. https://doi.org/10.1007/5346_2023_32

Download citation

Publish with us

Policies and ethics

Navigation