Log in

Optimization of a Flexible Film Bulk Acoustic Resonator-Based Toluene Gas Sensor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Flexible electronics have attracted wide attention for a variety of applications in the last few years; some based on components such as diodes and transistors have been reported earlier. This paper reports an optimized design of a flexible film bulk acoustic resonator suitable as a sensor for toluene gas detection with polyethylene terephthalate as flexible substrate. Aluminium nitride, lead zirconate titanate, and zinc oxide were chosen as the piezoelectric materials, and a polydimethylsiloxane (PDMS) coated electrode was placed on top to perform as a functional layer for sensing. Finite element modeling was used for the optimization of PDMS flexible film. The paper also reports the effect of different piezoelectric materials used, Bragg reflector stages and effect of PDMS layer thickness on the performance of the sensor. The optimal sensor configuration was obtained using Taguchi DoE and ANOVA techniques. For the optimized structure, simulated values of coupling coefficient, quality factor and figure of merit are 0.237574 (or 23.7574%), 991 and ~ 235, respectively. The sensor exposure to toluene in the concentrations from 0 to 500 ppm resulted in down shifting of its resonant frequency. Sensitivity of 12 kHz/ppm has been observed and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, and J. D. Larson, in Proc. IEEE Ultrason. Symp. (2001), pp. 813–821. https://doi.org/10.1109/ultsym.2001.991846

  2. M.L. Johnston, I. Kymissis, and K.L. Shepard, IEEE Sens. J. 10, 1042 (2010). https://doi.org/10.1109/JSEN.2010.2042711.

    Article  CAS  Google Scholar 

  3. A.J. Flewitt, J.K. Luo, Y.Q. Fu, L. Garcia-Gancedo, X.Y. Du, J.R. Lu, X.B. Zhao, E. Iborra, M. Ramos, W.I. Milne, and J. Nonnewton, Fluid Mech. 222, 209 (2014). https://doi.org/10.1016/j.jnnfm.2014.12.002.

    Article  CAS  Google Scholar 

  4. X. Qiu, R. Tang, J. Zhu, J. Oiler, C. Yu, Z. Wang, and H. Yu, Sensors Actuators B Chem. 147, 381 (2010). https://doi.org/10.1016/j.snb.2010.04.012.

    Article  CAS  Google Scholar 

  5. X.L. He, L. Garcia-Gancedo, P.C. **, J. Zhou, W.B. Wang, S.R. Dong, J.K. Luo, A.J. Flewitt, and W.I. Milne, J. Micromech. Microeng. 22, 125005 (2012). https://doi.org/10.1088/0960-1317/22/12/125005.

    Article  CAS  Google Scholar 

  6. D. Chen, Y. Xu, J. Wang, and L. Zhang, Sensors Actuators B Chem. 150, 483 (2010). https://doi.org/10.1016/j.snb.2010.07.047.

    Article  CAS  Google Scholar 

  7. C. Zhou, Y. Shu, Y. Yang, H. **, S.R. Dong, M. Chan, and T.L. Ren, J. Micromech. Microeng. 25, 055003 (2015). https://doi.org/10.1088/0960-1317/25/5/055003.

    Article  CAS  Google Scholar 

  8. L. Yu, H. **, N. Hu, S. Dong, and J. Luo, Integr. Ferroelectr. 168, 157 (2016). https://doi.org/10.1080/10584587.2016.1159538.

    Article  CAS  Google Scholar 

  9. L. Zhang, Y. Jiang, B. Liu, M. Zhang, and W. Pang, in Proc. IEEE Int. Conf. Micro Electro Mech. Syst. (2018), pp. 170–173. https://doi.org/10.1109/MEMSYS.2018.8346511

  10. A.S. da Silva Sobrinho, M. Latrèche, G. Czeremuszkin, J.E. Klemberg-Sapieha, and M.R. Wertheimer, J. Vac. Sci. Technol. A Vacuum Surfaces Film 16, 3190 (1998). https://doi.org/10.1116/1.581519.

    Article  Google Scholar 

  11. P. Muralt, Integr. Ferroelectr. 17, 297 (1997). https://doi.org/10.1080/10584589708013004.

    Article  CAS  Google Scholar 

  12. L. Fishbein, Sci. Total Environ. 42, 267 (1985). https://doi.org/10.1016/0048-9697(85)90062-2.

    Article  CAS  Google Scholar 

  13. J.W. Grate, S.N. Kaganove, and V.R. Bhethanabotla, Anal. Chem. 70, 199 (1998). https://doi.org/10.1021/ac970608z.

    Article  CAS  Google Scholar 

  14. B. H. Sage Jr, J. R. DeNuzzio, C. R. Bock, J. L. Haynes, and V. Reddy, (2003). U.S. Patent 6,584,349.

  15. J. S. Wang and K. M. Lakin, in 1981 Ultrason. Symp. (1981), pp. 502–505. https://doi.org/10.1109/ULTSYM.1981.197672

  16. E. Benes, M. Gröschl, and F. Seifert, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1314 (1998). https://doi.org/10.1109/58.726458.

    Article  CAS  Google Scholar 

  17. G. G. Fattinger, in 2008 IEEE Int. Freq. Control Symp. FCS (2008), pp. 762–767. https://doi.org/10.1109/FREQ.2008.4623102

  18. A.K. Johar, R. Patel, C. Periasamy, A. Agarwal, and D. Boolchandani, Mater. Res. Express 6, 15033 (2018). https://doi.org/10.1088/2053-1591/aae73a.

    Article  CAS  Google Scholar 

  19. C. J. Cheng and M. Z. Atashbar, in Proc. 2009 IEEE Int. Conf. Electro/Information Technol. EIT 2009 (2009), pp. 190–195. https://doi.org/10.1109/EIT.2009.5189609.

  20. C. M. Yang, K. Uehara, S. K. Kim, S. Kameda, H. Nakase, and K. Tsubouchi, in Proc. IEEE Ultrason. Symp. (2003), pp. 170–173. https://doi.org/10.1109/ultsym.2003.1293381

  21. T. Pensala, M. Ylilammi, J. Meltaus, and K. Kokkonen, in 2007 IEEE Ultrason. Symp. Proc. (2007), pp. 1661–1664

  22. M. Maute, S. Raible, F.E. Prins, D.P. Kern, H. Ulmer, U. Weimar, and W. Göpel, Sensors Actuators B Chem. 58, 505 (1999). https://doi.org/10.1016/S0925-4005(99)00110-0.

    Article  CAS  Google Scholar 

  23. A.K. Johar, T. Varma, C. Periasamy, A. Agarwal, and D. Boolchandani, J. Electron. Mater. 49, 1503 (2020). https://doi.org/10.1007/s11664-019-07843-x.

    Article  CAS  Google Scholar 

  24. Y. Wang, X. Liu, S. Shang, and X. Xu, in 2019 14th Symp. Piezoelectrcity, Acoust. Waves Device Appl. (2019), pp. 1–5. https://doi.org/10.1109/SPAWDA48812.2019.9019330

  25. J. Verd Martorell, Monolithic CMOS-MEMS Resonant Beams for Ultrasensitive Mass Detection (Universitat Autònoma de Barcelona, 2008).

  26. D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, Anal. Chem. 74, 3084 (2002). https://doi.org/10.1021/ac011269j.

    Article  CAS  Google Scholar 

  27. G.K. Sharma, A.K. Johar, T.B. Kumar, and D. Boolchandani, Analog Integr. Circuits Signal Process. 104, 331 (2020). https://doi.org/10.1007/s10470-020-01671-4.

    Article  Google Scholar 

  28. I. Publishing, K.B. Balavalad, and B.G. Sheeparamatti, Sensors Transducers 211, 8 (2017).

    Google Scholar 

  29. T.B. Kumar, A. Panda, G. Kumar Sharma, A.K. Johar, S.K. Kar, and D. Boolchandani, AEU Int. J. Electron. Commun. 116, 153070 (2020). https://doi.org/10.1016/j.aeue.2020.153070.

    Article  Google Scholar 

  30. Y. Hui, Z. Qian, and M. Rinaldi, in 2013 Jt. Eur. Freq. Time Forum Int. Freq. Control Symp. EFTF/IFC 2013 (2013), pp. 930–932. https://doi.org/10.1109/EFTF-IFC.2013.6702272

  31. M. Penza, F. Antolini, and M. Vittori-Antisari, Thin Solid Films 472, 246 (2005). https://doi.org/10.1016/j.tsf.2004.07.071.

    Article  CAS  Google Scholar 

  32. J. Reibel, S. Stier, A. Voigt, and M. Rapp, Anal. Chem. 70, 5190 (1998). https://doi.org/10.1021/ac9805504.

    Article  CAS  Google Scholar 

  33. M. Penza, G. Cassano, P. Aversa, A. Cusano, M. Consales, M. Giordano, and L. Nicolais, IEEE Sens. J. 6, 867 (2006). https://doi.org/10.1109/JSEN.2006.877974.

    Article  CAS  Google Scholar 

  34. A. Hajjam, and S. Pourkamali, IEEE Sens. J. 12, 1958 (2012). https://doi.org/10.1109/JSEN.2011.2181360.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to acknowledge the support of the Ministry of Electronics and Information Technology (MeitY), Government of India, for providing fellowship grant (Unique Awardee Number MEITY-PHD-861) under Visvesvaraya PhD Scheme for Electronics and IT. The authors also acknowledge support of Material Research Centre (MRC), Malaviya National Institute of Technology Jaipur, for providing the simulation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kishor Johar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johar, A.K., Sharma, G.K., Kumar, T.B. et al. Optimization of a Flexible Film Bulk Acoustic Resonator-Based Toluene Gas Sensor. J. Electron. Mater. 50, 5387–5395 (2021). https://doi.org/10.1007/s11664-021-09059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09059-4

Keywords

Navigation