PD Control of Overhead Crane Systems with Neural Compensation

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3972))

Included in the following conference series:

  • 149 Accesses

Abstract

This paper considers the problem of PD control of overhead crane in the presence of uncertainty associated with crane dynamics. By using radial basis function neural networks, these uncertainties can be compensated effectively. This new neural control can resolve the two problems for overhead crane control: 1) decrease steady-state error of normal PD control. 2) guarantee stability via neural compensation. By Lyapunov method and input-to-state stability technique, we prove that these robust controllers with neural compensators are stable. Real-time experiments are presented to show the applicability of the approach presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auernig, J.W., Troger, H.: Time Optimal Control of Overhead Cranes with Hoisting of the Payload. Automatica 23(2), 437–447 (1987)

    Article  MATH  Google Scholar 

  2. Beeston, J.W.: Closed-Loop Time Optimatial Control of a Suspended Payload-a Design Study. In: Proc. of 4th IFAC World Congress, pp. 85–99 (1969)

    Google Scholar 

  3. Butler, H.,, Honderd, G., Van Amerongen, J.: Model Reference Adaptive Control of a Gantry Crane Scale Model. IEEE Contr. Syst. Mag. 11(1), 57–62 (1991)

    Article  Google Scholar 

  4. Corriga, G., Giua, A., Usai, G.: An Implicit Gain-Scheduling Controller for Cranes. IEEE Trans. Control Systems Technology 6(1), 15–20 (1998)

    Article  Google Scholar 

  5. Cybenko, G.: Approximation by Superposition of Sigmoidal Activation Function. Math. Control, Sig. Syst. 2(2), 303–314 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fang, Y., Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear Coupling Control Laws for an Underactuated Overhead Crane System. IEEE/ASME Transactions on Mechatronics 8(2), 418–423 (2003)

    Article  Google Scholar 

  7. Kelly, R.: A Tuning Procedure for Stable PID Control of Robot Manipulators. Robotica 13(1), 141–148 (1995)

    Article  Google Scholar 

  8. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  9. Lee, H.H.: Modeling and Control of a Three-Dimensional Overhead Crane. Journal of Dynamic Systems, Measurement, and Control 120(2), 471–476 (1998)

    Article  Google Scholar 

  10. Lee, H.H.: A New Motion-Planning Scheme for Overhead Cranes With High-Speed Hoisting. Journal of Dynamic Systems, Measurement, and Control 126(2), 359–364 (2004)

    Article  Google Scholar 

  11. Lewis, F.L., Parisini, T.: Neural Network Feedback Control with Guaranteed Stability. Int. J. Control 70(1), 337–339 (1998)

    Article  Google Scholar 

  12. Moustafa, K.A., Ebeid, A.M.: Nonlinear Modeling and Control of Overhead Crane Load Sway. Journal of Dynamic Systems, Measurement, and Control 110(1), 266–271 (1988)

    Article  Google Scholar 

  13. Mohan, B.M., Patel, A.V.: Analytical Structures and Analysis of the Simplest Fuzzy PD Controller. IEEE Trans. on Syst., Man and Cybern. Part B 32(2), 239–248 (2002)

    Article  Google Scholar 

  14. Noakes, M.W., Jansen, J.F.: Generalized Input for Damped-Vibration Control of Suspended Payloads. Journal of Robotics and Autonomous Systems 10(2), 199–205 (1992)

    Article  Google Scholar 

  15. Sawodny, O., Aschemann, H., Lahres, S.: An Automated Gantry Crane as a Large Workspcae Robot. Control Engineering Practice 10(11), 1323–1338 (2002)

    Article  Google Scholar 

  16. Sakawa, Y., Shindo, Y.: Optimal Control of Container Cranes. Automatica 18(1), 257–266 (1982)

    Article  MATH  Google Scholar 

  17. Sontag, E.D., Wang, Y.: On Characterization of the Input-to-State Stability Property. System & Control Letters 24(3), 351–359 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yu, W., Li, X.: Some New Results on System Identification with Dynamic Neural Networks. IEEE Trans. Neural Networks 12(2), 412–417 (2001)

    Article  Google Scholar 

  19. Yu, J., Lewis, F.L., Huang, T.: Nonlinear Feedback Control of a Gantry Crane. In: Proc. of 1995 American Control Conference, pp. 4310–4315 (1995)

    Google Scholar 

  20. Yu, W., Li, X.: System Identification Using Adjustable RBF Neural Network with Stable Learning Algorithms. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 212–217. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toxqui, R.T., Yu, W., Li, X. (2006). PD Control of Overhead Crane Systems with Neural Compensation. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_163

Download citation

  • DOI: https://doi.org/10.1007/11760023_163

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34437-7

  • Online ISBN: 978-3-540-34438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation