Log in

Thermally-driven unequal cation vacancy formation and its effect on the dielectric properties in K0.5Na0.5NbO3 ceramics

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The formation of cation vacancies can be useful for electro-chemical devices. In this regard, an understanding of vacancy formation is an important subject for enhancing current electrochemical devices and for develo** next generation energy devices. In this work, we chose the well-known lead-free ferroelectric (K0.5Na0.5)NbO3 (KNN) as a model system to understand both the formation of cation vacancies and the relationship between cation vacancies and the physical properties. We studied sintering-duration dependence of the dielectric properties and the cation contents of KNN ceramics at the temperatures near the melting point of KNN. The difference in sintering duration led to a drastic change in the dielectric property, as well as to the creation of cation vacancies. Interestingly, we observed unequal evaporation of cations during the sintering process, which was confirmed by the data obtained from laser-induced breakdown spectroscopy. In addition, we found more drastic changes in the imaginary dielectric constant, which were likely due to a decrease in ionic conducting species, such as K and Na, in KNN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Li, J. Li, L-Q. Chen, B-L. Gu and W. Duan, Phys. Rev. B 92, 115435 (2015).

    Article  ADS  Google Scholar 

  2. W. Li et al., Nature Phys. 8, 126 (2012).

    Article  ADS  Google Scholar 

  3. N. Paunović et al., Nanoscale 4, 5469 (2012).

    Article  ADS  Google Scholar 

  4. P. Chin Goh, K. Yao and Z. Chen, Appl. Phys. Lett. 99, 092902 (2011).

    Article  ADS  Google Scholar 

  5. S. Dasgupta et al., Adv. Funct. Mater. 26, 7507 (2016).

    Article  Google Scholar 

  6. J. Shi, Y. Zhou and S. Ramanathan, Nat. Commun. 5, 4860 (2014).

    Article  ADS  Google Scholar 

  7. H. Jeen et al., Nat. Mater. 12, 1057 (2013).

    Article  ADS  Google Scholar 

  8. K. A. Stoerzinger, W. S. Choi, H. Jeen, H. N. Lee and Y. Shao-Horn, J. Phys. Chem. Lett. 6, 487 (2015).

    Article  Google Scholar 

  9. J. R. Petrie et al., Adv. Funct. Mater. 26, 1564 (2016).

    Article  Google Scholar 

  10. J. Jeong et al., Science 339, 1402 (2013).

    Article  ADS  Google Scholar 

  11. J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng and F. Z. Yao, J. Am. Ceram. Soc. 96, 3677 (2013).

    Article  Google Scholar 

  12. L. Liu et al., Mater. Chem. Phys. 117, 138 (2009).

    Article  Google Scholar 

  13. B. Malič et al., Materials 8, 8117 (2015).

    Article  ADS  Google Scholar 

  14. R. Guo et al., Phys. Rev. Lett. 84, 5423 (2000).

    Article  ADS  Google Scholar 

  15. T. Furukawa, K. Ishida and E. Fukada, J. Appl. Phys. 50, 4904 (1979).

    Article  ADS  Google Scholar 

  16. B. Jaffe, W. R. Cook and H. Jaffe, Piezoelectric ceramics (Academic Press, London, New York, 1971), p. 185.

    Google Scholar 

  17. T. R. Shrout and S. J. Zhang, J. Electroceram. 19, 113 (2007).

    Article  Google Scholar 

  18. G. Ray, N. Sinha and B. Kumar, Mater. Chem. Phys. 142, 619 (2013).

    Article  Google Scholar 

  19. S. Zhang, R. **a and T. R. Shrout, J. Electroceram. 19, 251 (2007).

    Article  Google Scholar 

  20. Y-H. Lee, J-H. Cho, B-I. Kim and D-K. Choi, Jpn. J. Appl. Phys. 47, 4620 (2008).

    Article  ADS  Google Scholar 

  21. P. Mahesh and D. Pamu, IOP Conf. Ser.: Mater. Sci. Eng. 73, 012 (2015).

    Article  Google Scholar 

  22. R. Sumang, C. Wicheanrat, T. Bongkarn and S. Maensiri, Ceram. Int. 41, S136 (2015).

    Article  Google Scholar 

  23. Y. Zhao, R. Huang, R. Liu, H. Zhou and W. Zhao, Curr. Appl. Phys. 13, 2082 (2013).

    Article  ADS  Google Scholar 

  24. J. Acker, H. Kungl and M. J. Hoffmann, J. Am. Ceram. Soc. 93, 1270 (2010).

    Google Scholar 

  25. K. Wang and J-F. Li, J. Adv. Ceram. 1, 24 (2012).

    Article  Google Scholar 

  26. Z-Y. Shen, K. Wang and J-F. Li, Appl. Phys. A 97, 911 (2009).

    Article  ADS  Google Scholar 

  27. Y. Zhen and J. F. Li, J. Am. Ceram. Soc. 89, 3669 (2006).

    Article  Google Scholar 

  28. D. Jenko, A. Bencan, B. Malic, J. Holc and M. Kosec, Microsc. Microanal. 11, 572 (2005).

    Article  ADS  Google Scholar 

  29. D. Rusak, B. Castle, B. Smith and J. Winefordner, Crit. Rev. Anal. Chem. 27, 257 (1997).

    Article  Google Scholar 

  30. D. W. Hahn and N. Omenetto, Appl. Spectrosc. 66, 347 (2012).

    Article  ADS  Google Scholar 

  31. N. Wei, J. Wang, B. Li, Y. Huan and L. Li, Ceram. Int. 41, 9555 (2015).

    Article  Google Scholar 

  32. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  33. B. Orayech, A. Faik, G. López, O. Fabelo and J. Igartua, J. Appl. Crystallogr. 48, 318 (2015).

    Article  Google Scholar 

  34. K. Wang and J. F. Li, J. Am. Ceram. Soc. 93, 1101 (2010).

    Article  Google Scholar 

  35. H. Du et al., Mater. Sci. Eng.: B 131, 83 (2006).

    Article  Google Scholar 

  36. J. G. Fisher and S-J. L. Kang, J. Eur. Ceram. Soc. 29, 2581 (2009).

    Article  Google Scholar 

  37. S. Priya and S. Nahm, Lead-free piezoelectrics (Springer-Verlag, New York, 2011), p. 87.

    Google Scholar 

  38. C. Fabre et al., Geochim. Cosmochim. Acta 66, 1401 (2002).

    Article  ADS  Google Scholar 

  39. T. Kim, C. Lin and Y. Yoon, J. Phys. Chem. B 102, 4284 (1998).

    Article  Google Scholar 

  40. A. Popovič, L. Bencze, J. Koruza and B. Malič, RSC Adv. 5, 76249 (2015).

    Article  Google Scholar 

  41. A. B. Haugen, F. Madaro, L-P. Bjørkeng, T. Grande and M-A. Einarsrud, J. Eur. Ceram. Soc. 35, 1449 (2015).

    Article  Google Scholar 

  42. R. López-Juárez, F. González and M-E. Villafuerte-Castrejón, Ferroelectrics-Material Aspects (InTech, México, 2011).

    Google Scholar 

  43. B. Malic, D. Jenko, J. Holc, M. Hrovat and M. Kosec, J. Am. Ceram. Soc. 91, 1916 (2008).

    Article  Google Scholar 

  44. M. W. Chase, J. Curnutt, H. Prophet, R. McDonald and A. Syverud, J. Phys. Chem. Ref. Data 4, 1 (1975).

    Article  ADS  Google Scholar 

  45. E. Ringgaard and T. Wurlitzer, J. Eur. Ceram. Soc. 25, 2701 (2005).

    Article  Google Scholar 

  46. H. E. Mgbemere, M. Hinterstein and G. A. Schneider, J. Eur. Ceram. Soc. 32, 4341 (2012).

    Article  Google Scholar 

  47. S. Huo, S. Yuan, Z. Tian, C. Wang and Y. Qiu, J. Am. Ceram. Soc. 95, 1383 (2012).

    Article  Google Scholar 

  48. Y-J. Dai, X-W. Zhang and K-P. Chen, Appl. Phys. Lett. 94, 042905 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoungjeen Jeen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Kong, H., Kim, D. et al. Thermally-driven unequal cation vacancy formation and its effect on the dielectric properties in K0.5Na0.5NbO3 ceramics. Journal of the Korean Physical Society 71, 979–985 (2017). https://doi.org/10.3938/jkps.71.979

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.979

Keywords

Navigation