Log in

Structure, dielectric, and ferroelectric properties of Ni do** on Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A series of Ba0.85Ca0.15Zr0.1(Ti1−xNix)0.9O3 (BCZT-xNi) (x = 0, 0.01, 0.02, 0.04) ceramics were prepared by the sol–gel method. The XRD results demonstrate that there is no secondary phase, revealing that Ni completely entered the unit cell to form a solid solution. The microstructures for Ni-doped BCZT ceramics show the average grain size decreases significantly with the increase of Ni content. When x = 0.01, the sample shows relatively high dielectric constant (εr ~ 4473) and good frequency stability, and low dielectric loss at 102 Hz (tan δ ~ 0.004). Influenced by do** Ni, the Curie temperature decreases and the diffusion phase transition increases. The hysteresis loop becomes slimmer and residual polarization is reduced. The sample of x = 0.02 shows an energy density of 0.18 J/cm3 and an energy efficiency of 70.12%. From the present work, cation replacement is an effective way to adjust its ferroelectric, dielectric, and energy storage properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. F. Kang, G. Sun, P. Boutinaud, H. Wu, F.-X. Ma, J. Lu, J. Gan, H. Bian, F. Gao, S. **ao, Chem. Eng. J. 403, 126099 (2021)

    Google Scholar 

  2. G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I.M. Reaney, Chem. Rev. 121(10), 6124 (2021)

    Google Scholar 

  3. S. Chen, Y. Pan, Appl. Surf. Sci. 599, 154041 (2022)

    Google Scholar 

  4. E. Yu, Y. Pan, Electrochim. Acta 435, 141391 (2022)

    Google Scholar 

  5. Y. Pan, J. Phys. Chem. Solids 174, 111152 (2023)

    Google Scholar 

  6. Y. Pan, Mater. Sci. Semicond. Process. 151, 107051 (2022)

    Google Scholar 

  7. Y. Pan, Int. J. Energy Res. 46(9), 13070 (2022)

    Google Scholar 

  8. Y. Pan, J.L. Chen, M. Wen, W.M. Guan, Chem. Phys. Lett. 719, 34 (2019)

    ADS  Google Scholar 

  9. Y. Pan, Mater. Sci. Semicond. Process. 120, 105306 (2020)

    Google Scholar 

  10. X.W. Wang, B.H. Zhang, Y.C. Shi, Y.Y. Li, M. Manikandan, S.Y. Shang, J. Shang, Y.C. Hu, S.Q. Yin, J. Appl. Phys. 127(7), 074103 (2020)

    ADS  Google Scholar 

  11. H. Yang, F. Yan, G. Zhang, Y. Lin, F. Wang, J. Alloys Compd. 720, 116 (2017)

    Google Scholar 

  12. Z. Yang, F. Gao, H. Du, L. **, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.-J. Wang, Nano Energy 58, 768 (2019)

    Google Scholar 

  13. S.Y. Chen, R. Liu, Y.P. Zheng, Y.J. Shi, S.T. Dang, Y.C. Shi, F. Yang, J.H. Li, L.F. He, S.J. Wu, X.F. Li, Y.C. Hu, J. Shang, S.Q. Yin, X.W. Wang, J. Alloys Compd. 936, 168015 (2023)

    Google Scholar 

  14. F. Gao, X. Dong, C. Mao, F. Cao, G. Wang, S.T. Zhang, J. Am. Ceram. Soc. 94(12), 4162 (2011)

    Google Scholar 

  15. W. Liu, X. Ren, Phys. Rev. Lett. 103(25), 257602 (2009)

    ADS  Google Scholar 

  16. Y. Tian, X. Chao, L. Wei, P. Liang, Z. Yang, J. Appl. Phys. 113(18), 184107 (2013)

    ADS  Google Scholar 

  17. X. Ji, C. Wang, S. Li, S. Zhang, R. Tu, Q. Shen, J. Shi, L. Zhang, J. Mater. Sci. Mater. Electron. 29(9), 7592 (2018)

    Google Scholar 

  18. L. He, Y. Ji, S. Ren, L. Zhao, H. Luo, C. Liu, Y. Hao, L. Zhang, L. Zhang, X. Ren, Ceram. Int. 46(3), 3236 (2020)

    Google Scholar 

  19. Y. Liu, Y. Chang, S. Yang, F. Li, Y. Sun, J. Wu, B. Yang, W. Cao, Ceram. Int. 45(8), 10518 (2019)

    Google Scholar 

  20. Z. Zhao, X. Li, H. Ji, Y. Dai, T. Li, J. Alloys Compd. 637, 291 (2015)

    Google Scholar 

  21. Q. Zhang, G. Li, Electr. Eng. 101(3), 759 (2019)

    ADS  Google Scholar 

  22. X.W. Wang, B.H. Zhang, G. Feng, L.Y. Sun, Y.C. Shi, Y.C. Hu, J. Shang, S.Y. Shang, S.Q. Yin, X.E. Wang, J. Electron. Mater. 49(1), 880 (2020)

    ADS  Google Scholar 

  23. Y. Yang, W. Wang, G. Wang, T. Wang, D. Xue, Mater. Chem. Phys. 234, 90 (2019)

    Google Scholar 

  24. J.-P. Ma, X.-M. Chen, W.-Q. Ouyang, J. Wang, H. Li, J.-L. Fang, Ceram. Int. 44(4), 4436 (2018)

    Google Scholar 

  25. X. Chen, X. Ruan, K. Zhao, X. He, J. Zeng, Y. Li, L. Zheng, C.H. Park, G. Li, J. Alloys Compd. 632, 103 (2015)

    Google Scholar 

  26. W. Li, J. Hao, W. Bai, Z. Xu, R. Chu, J. Zhai, J. Alloys Compd. 531, 46 (2012)

    Google Scholar 

  27. X. Chao, J. Wang, J. Pu, S. Zhang, Z. Yang, Sens. Actuators A 237, 9 (2016)

    Google Scholar 

  28. Y. Pan, Mat. Sci. Eng. B Adv. 281, 115746 (2022)

    Google Scholar 

  29. X. Chen, P. Liu, J. Zhou, W. Kong, J. Zhang, Physica B 405(13), 2815 (2010)

    ADS  Google Scholar 

  30. N. Kumari, S. Monga, M. Arif, N. Sharma, A. Singh, V. Gupta, P.M. Vilarinho, K. Sreenivas, R.S. Katiyar, Ceram. Int. 45(4), 4398 (2019)

    Google Scholar 

  31. J. Wu, D. **ao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, J. Eur. Ceram. Soc. 32(4), 891 (2012)

    Google Scholar 

  32. S. Kumari, D.K. Pradhan, S. Liu, M.M. Rahaman, P. Zhou, K.M. Roccapriore, D.K. Pradhan, G. Srinivasan, Q. Li, R.S. Katiyar, P.D. Rack, J.F. Scott, A. Kumar, Phys. Rev. B 104(17), 174415 (2021)

    ADS  Google Scholar 

  33. Y. Pan, E. Yu, Int. J. Hydrog. Energy 47(64), 27608 (2022)

    Google Scholar 

  34. E. Yu, Y. Pan, Int. J. Hydrog. Energy 48(39), 14785 (2023)

    Google Scholar 

  35. Y. Zhang, H. Deng, S. Si, T. Wang, D. Zheng, P. Yang, J. Chu, J. Am. Ceram. Soc. 103(4), 2491 (2019)

    Google Scholar 

  36. C. Ma, X. Wang, Z. Gan, W. Tan, X. Wang, J. Zhang, W. Zhou, Ceram. Int. 45(1), 588 (2019)

    Google Scholar 

  37. E. Yu, Y. Pan, J. Mater. Chem. A 10(46), 24866 (2022)

    Google Scholar 

  38. X.W. Wang, X.N. Shi, R.Y. Zhang, Y.C. Shi, Y.F. Liang, B.H. Zhang, H.N. Li, S.Y. Hu, K.X. Yu, Y.C. Hu, J. Shang, S.Q. Yin, J. Mater. Sci. Mater. Electron. 33(25), 20399 (2022)

    Google Scholar 

  39. X. Wang, B. Li, Solid State Commun. 149(13–14), 537 (2009)

    ADS  Google Scholar 

  40. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2(3), 132 (1990)

    Google Scholar 

  41. M.-D. Li, X.-G. Tang, S.-M. Zeng, Y.-P. Jiang, Q.-X. Liu, T.-F. Zhang, W.-H. Li, J. Materiomics 4(3), 194 (2018)

    Google Scholar 

  42. S.B. Li, C.B. Wang, L. Li, Q. Shen, L.M. Zhang, J. Alloys Compd. 730, 182 (2018)

    Google Scholar 

  43. U. Intatha, P. Parjansri, K. Pengpat, G. Rujijanagul, T. Tunkasiri, S. Eitssayeam, Integr. Ferroelectr. 139(1), 83 (2012)

    ADS  Google Scholar 

  44. S. Yun, J. Shi, X. Qian, Mater. Chem. Phys. 133(1), 487 (2012)

    Google Scholar 

  45. W. **aoyong, F. Yujun, Y. **, Appl. Phys. Lett. 83(10), 2031 (2003)

    ADS  Google Scholar 

  46. X. Wang, P. Liang, L. Wei, X. Chao, Z. Yang, J. Mater. Sci. Mater. Electron. 27(4), 3217 (2016)

    Google Scholar 

  47. Y. **, C. Zhili, L.E. Cross, J. Appl. Phys. 54(6), 3399 (1983)

    ADS  Google Scholar 

  48. Z. Wang, X.M. Chen, Solid State Commun. 151(9), 708 (2011)

    ADS  Google Scholar 

  49. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Solid State Commun. 131(3–4), 163 (2004)

    ADS  Google Scholar 

  50. X.W. Wang, B.H. Zhang, G. Feng, L.Y. Sun, Y.C. Hu, S.Y. Shang, S.Q. Yin, J. Shang, X.E. Wang, Mater. Res. Bull. 114, 74 (2019)

    Google Scholar 

  51. K. Xu, P. Yang, W. Peng, L. Li, J. Alloys Compd. 829, 154516 (2020)

    Google Scholar 

  52. S. Kumari, A. Kumar, A. Kumar, V. Kumar, V.N. Thakur, A. Kumar, P.K. Goyal, A. Gaur, A. Arya, A.L. Sharma, Ceram. Int. 48(10), 13780 (2022)

    Google Scholar 

  53. W. Ge, M. Gao, C. Wu, Y. Fang, C. Liu, H. Zhao, H. Yuan, J. Electroceram. 47(3), 67 (2021)

    Google Scholar 

  54. S. Smail, M. Benyoussef, K. Taïbi, N. Bensemma, B. Manoun, M. El Marssi, A. Lahmar, Mater. Chem. Phys. 252, 123462 (2020)

    Google Scholar 

  55. A.R. Jayakrishnan, K.V. Alex, A. Thomas, J.P.B. Silva, K. Kamakshi, N. Dabra, K.C. Sekhar, J. Agostinho-Moreira, M.J.M. Gomes, Ceram. Int. 45(5), 5808 (2019)

    Google Scholar 

  56. Y.P. Zheng, Y.C. Shi, Z.Y. Ren, B.H. Zhang, J. Feng, H.N. Li, S.T. Dang, F. Yang, J. Shang, S.Q. Yin, Y.C. Hu, Z.Y. Gao, X.W. Wang, Physica B 643, 414140 (2022)

    Google Scholar 

  57. D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, I.M. Reaney, J. Mater. Chem. A 6(9), 4133 (2018)

    Google Scholar 

  58. X. He, B. Fang, S. Zhang, X. Lu, J. Ding, J. Alloys Compd. 925, 166249 (2022)

    Google Scholar 

  59. X. Wang, S. Chen, Y. Liang, B. Zhang, X. Shi, R. Zhang, Y. Shi, Z. Ren, R. Liu, Y. Hu, J. Shang, S. Yin, Eur. Phys. J. Appl. Phys. 97, 73 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (nos. 51402091, 61901161), the Scientific Research Project in Henan Normal University (no. 20210376), the National University Student Innovation Program (no. 202010476023), and the University Student Innovation Program in Henan Normal University (nos. 20200208, 20200209, 20200212).

Author information

Authors and Affiliations

Authors

Contributions

In this article, the author's contributions are as follows, HL: data curation, writing—original draft, visualization. JL: investigation, data curation, writing—review and editing. YS: investigation, resources, writing—original draft. BZ: writing—review and editing, visualization. LL: resources. RL: writing—review and editing. SW: writing—review and editing. XL: writing—review and editing. JS: writing—review and editing. YH: writing—review and editing. XW: conceptualization, writing—review and editing, supervision.

Corresponding author

Correspondence to X. W. Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H.N., Li, J.H., Shi, Y.C. et al. Structure, dielectric, and ferroelectric properties of Ni do** on Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. Appl. Phys. A 129, 474 (2023). https://doi.org/10.1007/s00339-023-06758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06758-z

Keywords

Navigation