Log in

Structural effects of substitutional impurities on MoO3 bilayers: A first principles study

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Energy band-gap engineering via impurity intercalation into the 2-D MoO3 bilayer lattice has been studied using density functional theory calculations, and the effects of various kinds of dopants on the electronic structure have been explored. The dopants were incorporated via both oxygen and molybdenum substitution. The results show that although the MoO3 bilayer is an indirect band-gap semiconductor with zero magnetization, doped molybdenum trioxide experiences a band-gap reduction and a pure magnetization. Based on the calculated results, impurity do** leads to the creation of impurity levels inside the band-gap, and thereby both types of conductivity (n type and p type) can be identified. The calculated impurity formation-energies indicate that Nb and W atoms can be readily incorporated into the MoO3 bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zheng, Y. Xu, D. ** and Y. **e, Chem. of Mater. 21, 5681 (2009).

    Article  Google Scholar 

  2. M. Quevedo-Lopez, R. Reidy, R. Orozco-Teran, O. Mendoza-Gonzalez and R. Ramirez-Bon, J. Mater. Sci.: Mater. Electron. 11, 151 (2000).

    Google Scholar 

  3. B. W. Faughnan and R. S. Crandall, Appl. Phys. Lett. 31, 834 (1977).

    Article  ADS  Google Scholar 

  4. A. Kyaw, X. Sun, C. Jiang, G. Lo, D. Zhao and D. Kwong, Appl. Phys. Lett. 93, 221107 (2008).

    Article  ADS  Google Scholar 

  5. G. H. Jung, K. Hong, W. J. Dong, S. Kim and J. L. Lee, Adv. Energy Mater. 1, 1023 (2011).

    Article  Google Scholar 

  6. L. Kihlborg, Arkiv for Kemi 21, 357 (1963).

    Google Scholar 

  7. J. Parise, E. McCarron, R. Von Dreele and J. Goldstone, J. Solid State Chem. 93, 193 (1991).

    Article  ADS  Google Scholar 

  8. A. Bouzidi, N. Benramdane, H. Tabet-Derraz, C. Mathieu, B. Khelifa and R. Desfeux, Mater. Sci. Eng. B 97, 5 (2003).

    Article  Google Scholar 

  9. J. Z. Ou, J. L. Campbell, D. Yao, W. Wlodarski and K. Kalantar-Zadeh, J. Phys. Chem. C 115, 10757 (2011).

    Article  Google Scholar 

  10. J. W. Rabalais, R. J. Colton and A. M. Guzman, Chem. Phys. Lett. 29, 131 (1974).

    Article  ADS  Google Scholar 

  11. A. Castellanos-Gomez, M. Poot, G.A. Steele, H. S. van der Zant, N. Agrait and G. Rubio-Bollinger, Adv. Mater. 24, 772 (2012).

    Article  Google Scholar 

  12. K. A. N. Duerloo, M. T. Ong and E. J. Reed, J. Phys. Chem. Lett. 3, 2871 (2012).

    Article  Google Scholar 

  13. H. Tagaya, K. Ara, J. i. Kadokawa, M. Karasu and K. Chiba, J. Mater. Chem. 4, 551 (1994).

    Article  Google Scholar 

  14. X. Sha, L. Chen, A. C. Cooper, G. P. Pez and H. Cheng, J. Phys. Chem. C 113, 11399 (2009).

    Article  Google Scholar 

  15. M. Mansouri and T. Mahmoodi, Acta Physica Polonica A 129, 8 (2016).

    Article  Google Scholar 

  16. S. S. Mahajan, S. H. Mujawar, P. S. Shinde, A. L. Inamdar and P. S. Patil, Sol. Energy Mater. Sol. Cells 93, 183 (2009).

    Article  Google Scholar 

  17. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni and I. Dabo, J. Phys. Cond. Matt. 21, 395502 (2009).

    Article  Google Scholar 

  18. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Coquet and D. J. Willock, Phys. Chem. Chem. Phys. 7, 3819 (2005).

    Article  Google Scholar 

  20. L. Wang, T. Maxisch and G. Ceder, Phys. Rev. B 73, 195107 (2006).

    Article  ADS  Google Scholar 

  21. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  22. J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh and C. Fiolhais, Atoms, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  23. G. Andersson and A. Magneli, Acta Chem. Scand 4, 793 (1950).

    Article  Google Scholar 

  24. D. O. Scanlon, G. W.Watson, D. Payne, G. Atkinson, R. Egdell and D. Law, J. Phys. Chem. C 114, 4636 (2010).

    Article  Google Scholar 

  25. H. Martínez, J. Torres, L. López-Carreño and M. Rodríguez-García, J. Superconductivity Novel Magnetism 26, 2485 (2013).

    Article  Google Scholar 

  26. R. Erre, M. Legay and J. Fripiat, Surf. Sci. 127, 69 (1983).

    Article  ADS  Google Scholar 

  27. F. Corü, A. Patel, N. M. Harrison, C. Roetti and C. R. A. Catlow, J. Mater. Chem. 7, 959 (1997).

    Article  Google Scholar 

  28. M. Chen, U. Waghmare, C. Friend and E. Kaxiras, J. Chem. Phys. 109, 6854 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahereh Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, T., Mansouri, M. Structural effects of substitutional impurities on MoO3 bilayers: A first principles study. Journal of the Korean Physical Society 69, 1439–1444 (2016). https://doi.org/10.3938/jkps.69.1439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1439

Keywords

Navigation