Log in

Design and Fabrication of a High-Performance Sensor for Formaldehyde Detection Based on Graphene-TiO2/Ag Electrode

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This research explores the heightened sensitivity of the electrochemical formaldehyde detection achieved by incorporating a modified graphene paste electrode with a titanium dioxide-silver (TiO2/Ag) composite (GTA). The G-TiO2 matrix was augmented with varying masses of silver modifiers, namely, 0.2, 0.4, 0.6, and 0.8 g, aiming to establish the most effective composition for formaldehyde detection. Characterization through scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed the material’s composition, revealing GTA electrode nanocomposites consisting of carbon, oxygen, titanium, and silver with the compositions of 77.05, 19.46, 2.39, and 1.11%, respectively. An electrochemical analysis was conducted to assess the efficacy of the developed electrode in a 1 M K3[Fe(CN)6] solution. Furthermore, a real sample testing was performed to evaluate the practical utility of the electrode gauging its efficiency through the calculation of percentage recovery before and after treatment. The GTA electrode with a 0.4 g Ag modifier exhibited the optimal performance, as evidenced by a Horwitz Ratio stability test result of 1.38% and a limit of detection of 0.0168 µg/L. This research highlights the promising potential of the GTA electrode for the precise and sensitive formaldehyde detection, particularly in processed food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Savelli, C.J., Bradshaw, A., Ben Embarek, P., and Mateus, C., The FAO/WHO international food safety authorities network in review, 2004–2018: Learning from the past and looking to the future, Foodborne Pathog. Dis., 2019, vol. 16, p. 480.

    Article  Google Scholar 

  2. De Witte, B., Coleman, B., Bekaert, K., Boitsov, S., et al., Threshold values on environmental chemical contaminants in seafood in the European Economic Area, Food Control, 2022, vol. 138, p. 108978. https://doi.org/10.1016/j.foodcont.2022.108978

    Article  Google Scholar 

  3. Garvey, M., Food pollution: A comprehensive review of chemical and biological sources of food contamination and impact on human health, Nutrire, 2019, vol. 44, p. 1. https://doi.org/10.1186/s41110-019-0096-3

    Article  Google Scholar 

  4. Gomez, A., Narayan, M., Zhao, L., Jia, X., et al., Effects of nano-enabled agricultural strategies on food quality: Current knowledge and future research needs, J. Hazard. Mater., 2021, vol. 401, p. 123385. https://doi.org/10.1016/j.jhazmat.2020.123385

    Article  Google Scholar 

  5. Najemi, A., Purwastuti, L., and Nawawi, K., The role of the food and drug supervisory agency (BPOM) in managing circulation of cosmetics and hazardous foods, Berumpun Int. J. Soc. Polit. Humanit., 2019, vol. 2, no. 2, p. 76. https://doi.org/10.33019/berumpun.v2i2.21

    Article  Google Scholar 

  6. Karki, B., Ramya, K.C., Sandhya Devi, R.S., Srivastava, V., et al., Titanium dioxide, black phosphorus and bimetallic layer-based surface plasmon biosensor for formalin detection: Numerical analysis, Opt. Quantum Electron., 2022, vol. 54, p. 451. https://doi.org/10.1007/s11082-022-03875-6

    Article  Google Scholar 

  7. Zhang, L., Li, Y., Liang, Y., Liang, K., et al., Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China, Food Chem., vol. 276, p. 538.

  8. Wu, R., Ma, F., Zhang, L., Li, P., et al., Simultaneous determination of phenolic compounds in sesame oil using LC–MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes, Food Chem., 2016, vol. 204, p. 334.

    Article  Google Scholar 

  9. Nurdin, M., Arham, Z., Irna, W.O., Maulidiyah, M., et al., Enhanced-charge transfer over molecularly imprinted polyaniline modified graphene/TiO2 nanocomposite electrode for highly selective detection of fipronil insecticide, Mater. Sci. Semicond. Process., 2022, vol. 151, p. 106994. https://doi.org/10.1016/j.mssp.2022.106994

    Article  Google Scholar 

  10. Nurdin, M., Maulidiyah, M., Watoni, A.H., Armawansa, A., et al., Nanocomposite design of graphene modified TiO2 for electrochemical sensing in phenol detection, Korean J. Chem. Eng., 2022, vol. 39, p. 209.

    Article  Google Scholar 

  11. Muzakkar, M.Z., Azis, T., Rajiani, M.S.P., Maulidiyah, M., et al., The effect of calcogenate sulfur on the performance of the S–TiO2/Ti electrode as a photoelectrocatalytic sensor for phenolic compounds, J. Phys: Conf. Ser., 2021, vol. 1763, p. 012069.

    Google Scholar 

  12. Muzakkar, M.Z., Natsir, M., Alisa, A., Maulidiyah, M., et al., Photoelectrocatalytic degradation of reactive red 141 using FeTiO3 composite doped TiO2/Ti electrodes, J. Phys.: Conf. Ser., 2021, vol. 1899, p. 012043. https://doi.org/10.1088/1742-6596/1899/1/012043

    Article  Google Scholar 

  13. Wibowo, D., Ruslan, Maulidiyah, and Nurdin, M., Determination of COD based on photoelectrocatalysis of FeTiO3·TiO2/Ti electrode, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 267, p. 012007. https://doi.org/10.1088/1757-899X/267/1/012007

  14. Nurdin, M., Dali, N., Irwan, I., Maulidiyah, M., et al., Selectivity determination of Pb2+ ion based on TiO2-ionophores BEK6 as carbon paste electrode composite, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 1538.

    Google Scholar 

  15. Maulidiyah, M., Azis, T., Lindayani, L., Wibowo, D., et al., Sol-gel TiO2/carbon paste electrode nanocomposites for electrochemical-assisted sensing of fipronil pesticide, J. Electrochem. Sci. Technol., 2019, vol. 10, no. 4, p. 394. https://doi.org/10.33961/jecst.2019.00178

    Article  Google Scholar 

  16. Fu, J., Yao, Y., An, X., Wang, G., et al., Voltammetric determination of organophosphorus pesticides using a hairpin aptamer immobilized in a graphene oxide-chitosan composite, Microchim. Acta., 2020, vol. 187, no. 4, p. 36. https://doi.org/10.1007/s00604-019-4022-4

    Article  Google Scholar 

  17. Nurdin, M., Agusu, L., Putra, A.A.M., Maulidiyah, M., et al., Synthesis and electrochemical performance of graphene-TiO2-carbon paste nanocomposites electrode in phenol detection, J. Phys. Chem. Solids, 2019, vol. 131, p. 104. https://doi.org/10.1016/j.jpcs.2019.03.014

    Article  Google Scholar 

  18. Tavakkoli, N., Soltani, N., Salavati, H., and Talakoub, M., New carbon paste electrode modified with graphene/TiO2/V2O5 for electrochemical measurement of chlorpromazine hydrochloride, J. Taiwan Inst. Chem. Eng., 2018, vol. 83, p. 50.

    Article  Google Scholar 

  19. Nurdin, M., Arham, Z., Rasyid, J., Maulidiyah, M., et al., Electrochemical performance of carbon paste electrode modified TiO2/Ag–Li (CPE-TiO2/Ag–Li) in determining fipronil compound, J. Phys. Conf. Ser., 2021, vol. 1763, p. 012067. https://doi.org/10.1088/1742-6596/1763/1/012067

    Article  Google Scholar 

  20. Wibowo, D., Sufandy, Y., Irwan, I., Azis, T., et al., Investigation of nickel slag waste as a modifier on graphene-TiO2 microstructure for sensing phenolic compound, J. Mater. Sci.: Mater. Electron., 2020, vol. 31, p. 14375. https://doi.org/10.1007/s10854-020-03996-2

    Article  Google Scholar 

  21. Mursalim, L.O., Ruslan, A.M., Safitri, R.A., Azis, T., et al., Synthesis and photoelectrocatalytic performance of Mn–N–TiO2/Ti electrode for electrochemical sensor, IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 267, p. 012006. https://doi.org/10.1088/1757-899X/267/1/012006

  22. Muzakkar, M.Z., Umar, A.A., IlhaVeerrampanm, I., Saputra, Z., et al., Chalcogenide material as high photoelectrochemical performance Se doped TiO2/Ti electrode: Its application for Rhodamine B degradation, J. Phys.: Conf. Ser., 2019, vol. 1242, p. 012016.

    Google Scholar 

  23. Nurdin, M., Zaeni, A., Maulidiyah, M., Natsir, M., et al., Comparison of conventional and microwave-assisted extraction methods for TiO2 recovery in mineral sands, Orient. J. Chem., 2016, vol. 32, p. 2713. https://doi.org/10.13005/ojc/320545

    Article  Google Scholar 

  24. Nurdin, M., Nuhung, S., Musdalifah, A., Salim, L.O.A., et al., Cu–TiO2 doped Ti thin-layer photoelectrode for visible-light induced photoelectrocatalytic activities: Degradation of methylene orange, J. Phys.: Conf. Ser., 2021, vol. 1899, p. 012042. https://doi.org/10.1088/1742-6596/1899/1/012042

    Article  Google Scholar 

  25. Kavinkumar, V., Verma, A., Uma, K., Moscow, S., et al., Plasmonic metallic silver induced Bi2WO6/TiO2 ternary junction towards the photocatalytic, electrochemical OER/HER, antibacterial and sensing applications, Appl. Surf. Sci., 2021, vol. 569, p. 150918.

    Article  Google Scholar 

  26. Nurdin, M., Watoni, A.H., Arham, Z., Yanti, N.A., et al., Strong inhibition of silver-doped TiO2 nanoparticles against P. palmivora in visible light, Bionanoscience, 2022, vol. 12, p. 351. https://doi.org/10.1007/s12668-022-00963-5

    Article  Google Scholar 

  27. Nurdin, M., Maulidiyah, M., Salim, L.O.A., Muzakkar, M.Z., et al., High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode, Microchem. J., 2018, vol. 145, p. 756. https://doi.org/10.1016/J.MICROC.2018.11.050

    Article  Google Scholar 

  28. Salim, L.O.A., Muzakkar, M.Z., Zaeni, A., Maulidiyah, M., et al., Improved photoactivity of TiO2 photoanode of dye-sensitized solar cells by sulfur do**, J. Phys. Chem. Solids, 2023, vol. 175, p. 111224. https://doi.org/10.1016/j.jpcs.2023.111224

    Article  Google Scholar 

  29. Wibowo, D., Malik, R.H.A., Mustapa, F., Nakai, T., et al., Highly synergistic sensor of graphene electrode functionalized with rutile TiO2 microstructures to detect L-tryptophan compound, J. Oleo Sci., 2022, vol. 71, no. 5, p. 759. https://doi.org/10.5650/jos.ess21416

    Article  Google Scholar 

  30. Cao, M, **ong, D.B, Yang, L., Li, S., et al., Ultrahigh electrical conductivity of graphene embedded in metals, Adv. Funct. Mater., 2019, vol. 29, no. 17, p. 1806792. https://doi.org/10.1002/adfm.201806792

    Article  Google Scholar 

  31. Das, C.M., Kang, L., Ouyang, Q., and Yong, K.-T., Advanced low-dimensional carbon materials for flexible devices, InfoMat., 2020, vol. 2, no. 4, p. 698. https://doi.org/10.1002/inf2.12073

    Article  Google Scholar 

  32. Nurdin, M., Prabowo, O.A., Arham, Z., Wibowo, D., et al., Highly sensitive fipronil pesticide detection on ilmenite (FeO·TiO2)-carbon paste composite electrode, Surf. Interfaces, 2019, vol. 16, p. 108. https://doi.org/10.1016/j.surfin.2019.05.008

    Article  Google Scholar 

  33. Yadav, M., Dhanda, M., Arora, R., Jagdish, R., et al., Titania (TiO2)/silica (SiO2) nanospheres or NSs amalgamated on a pencil graphite electrode to sense L‑ascorbic acid electrochemically and augmented NSs for antimicrobial behaviour, New J. Chem., 2022, vol. 46, p. 12783. https://doi.org/10.1039/d2nj01892f

    Article  Google Scholar 

  34. Silva Olaya, A.R., Kühling, F., Mahr, C., Zandersons, B., et al., Promoting effect of the residual silver on the electrocatalytic oxidation of methanol and its intermediates on nanoporous gold, ACS Catal., 2022, vol. 12, no. 8, p. 4415. https://doi.org/10.1021/acscatal.1c05160

    Article  Google Scholar 

  35. Patil, V.B., Malode, S.J., Tuwar, S.M., and Shetti, N.P., Graphene sheet-based electrochemical sensor with cationic surfactant for sensitive detection of atorvastatin, Sensors Int., 2022, vol. 3, p. 100198. https://doi.org/10.1016/j.sintl.2022.100198

    Article  Google Scholar 

  36. Irdhawati, I., Methaninditya, N.K.S.M., and Putra, A.A.B., Carbon paste electrode modified by dibenzo-18-crown-6 for the determination of paracetamol using differential pulse voltammetry technique, Indones. J. Chem., 2023, vol. 23, no. 1, p. 53. https://doi.org/10.22146/ijc.74393

    Article  Google Scholar 

  37. Nurdin, M., Azis, T., Hadijah, S., Salim, L.O.A., et al., Electroanalytical measurement using carbon paste electrode modified TiO2/Ag–Li in detection of fipronil compound, AIP Conf. Proc., 2023, vol. 2719, p. 030012.

    Article  Google Scholar 

  38. Gimadutdinova, L., Ziyatdinova, G., and Davletshin, R., Selective voltammetric sensor for the simultaneous quantification of tartrazine and brilliant blue FCF, Sensors, 2023, vol. 23, no. 3, p. 1094. https://doi.org/10.3390/s23031094

    Article  Google Scholar 

  39. Zarei, E., Jamali, M.R., and Ahmadi, F., Highly sensitive electrocatalytic determination of formaldehyde using a Ni/ionic liquid modified carbon nanotube paste electrode, Bull. Chem. React. Eng. Catal., 2018, vol. 13, no. 3, p. 529. https://doi.org/10.9767/bcrec.13.3.2341.529-542

    Article  Google Scholar 

Download references

Funding

The authotrs acknowledge the financial support from the Ministry of Education, Culture, Research and Technology of the Republic of Indonesia under the Fundamental Research award grants no. DIPA-023.17.1.690523/2023 and no. 49/UN29.20/PG/2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nurdin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad Natsir, Nurdin, M., Syah, Z.R. et al. Design and Fabrication of a High-Performance Sensor for Formaldehyde Detection Based on Graphene-TiO2/Ag Electrode. Surf. Engin. Appl.Electrochem. 60, 247–255 (2024). https://doi.org/10.3103/S1068375524020078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375524020078

Keywords:

Navigation