Log in

Detection of formaldehyde by cyclic voltammetry using a PANI/GO composite film–modified electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, we described the preparation of polyaniline-graphene oxide composite film (PANI/GO) by the stirring electropolymerization method and then it was characterized. A graphite rod electrode (GE) modified with the composite film showed enhanced electrochemical sensing capability for formaldehyde solution. Cyclic voltammetry showed an increase in the formaldehyde oxidation peak current at the GE modified with PANI/GO (GO/PANI/GE). The sensitivity in the linear segment was 502.42 μA mM−1 cm−2. The oxidation peak current increased linearly with increasing formaldehyde concentration from 0.1 to 20 μM. The detection limit was 0.0185 µM (S/N = 3). In addition, the sensor displays an acceptable repeatability and reproducibility along with appreciable storage and excellent operational stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yu G, Zhang Y, Liu S et al (2019) Small interfering RNA targeting of peroxiredoxin II gene enhances formaldehyde-induced toxicity in bone marrow cells isolated from BALB/c mice [J]. Ecotoxicol Environ Saf 181:89–95

    Article  CAS  PubMed  Google Scholar 

  2. Ma C, Yang C, Wang B et al (2019) Effects of H2O on HCHO and CO oxidation at room-temperature catalyzed by MCo2O4 (M= Mn, Ce and Cu) materials [J]. Appl Catal B 254:76–85

    Article  CAS  Google Scholar 

  3. Lin C-F, Zan H-W, Lu C-J et al (2019) A low-cost miniaturized colorimetric sensor with vertically-stacked semi-transparent finger-type organic photo detector for formaldehyde sensing [J]. Org Electron 73:115–121

    Article  CAS  Google Scholar 

  4. Mei X, Guo Z, Liu J et al (2019) Treatment of formaldehyde wastewater by a membrane-aerated biofilm reactor (MABR): the degradation of formaldehyde in the presence of the cosubstrate methanol [J]. Chem Eng J 372:673–683

    Article  CAS  Google Scholar 

  5. Whalan JE, Stanek J, Woodall G et al (2019) The evaluation of inhalation studies for exposure quality: a case study with formaldehyde [J]. Toxicol Lett 312:167–172

    Article  CAS  PubMed  Google Scholar 

  6. Suresh S, Kante K, Fini EH et al (2019) Combination of alkalinity and porosity enhances formaldehyde adsorption on pig manure-derived composite adsorbents [J]. Microporous Mesoporous Mater 286:155–162

    Article  CAS  Google Scholar 

  7. Arce M, Sanllorente S, Ortiz M (2019) Kinetic models of migration of melamine and formaldehyde from melamine kitchenware with data of liquid chromatography [J]. J Chromatogr A 1599:115–124

    Article  CAS  PubMed  Google Scholar 

  8. Guo W, Zhao B, Zhou Q et al (2019) Fe-doped ZnO/reduced graphene oxide nanocomposite with synergic enhanced gas sensing performance for the effective detection of formaldehyde [J]. ACS Omega 4(6):10252–10262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li H, Cui L, Lu Y et al (2019) In situ intermediates determination and cytotoxicological assessment in catalytic oxidation of formaldehyde: implications for catalyst design and selectivity enhancement under ambient conditions [J]. Environ Sci Technol 53(9):5230–5240

    Article  CAS  PubMed  Google Scholar 

  10. Ansari Chaharsoughi M, Kazemi Najafi S, Behrooz R (2019) Formaldehyde emission from PVC–wood composites containing MDF sanding dust [J]. J Vinyl Add Tech 25(2):159–164

    Article  CAS  Google Scholar 

  11. Ganie AS, Bano S, Sultana S et al (2021) Ferrite nanocomposite based electrochemical sensor: characterization, voltammetric and amperometric studies for electrocatalytic detection of formaldehyde in aqueous Media [J]. Electroanalysis 33(1):233–248

    Article  CAS  Google Scholar 

  12. Mahmoudian MR, Basirun WJ, Woi PM et al (2019) Voltammetric sensing of formaldehyde by using a nanocomposite prepared by reductive deposition of palladium and platinum on polypyrrole-coated nitrogen-doped reduced graphene oxide [J]. Microchim Acta 186(6):1–12

    Article  CAS  Google Scholar 

  13. Wang L, Huang L, **a H et al (2019) Application of a multi-electrode system with polyaniline auxiliary electrodes for electrokinetic remediation of chromium-contaminated soil [J]. Sep Purif Technol 224:106–112

    Article  CAS  Google Scholar 

  14. Orachorn N, Bunkoed O (2019) A nanocomposite fluorescent probe of polyaniline, graphene oxide and quantum dots incorporated into highly selective polymer for lomefloxacin detection [J]. Talanta 203:261–268

    Article  CAS  PubMed  Google Scholar 

  15. Dognani G, Hadi P, Ma H et al (2019) Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane [J]. Chem Eng J 372:341–351

    Article  CAS  Google Scholar 

  16. Ding Q, Qian R, **g X et al (2019) Reaction of aniline with KMnO4 to synthesize polyaniline-supported Mn nanocomposites: an unexpected heterogeneous free radical scavenger [J]. Mater Lett 251:222–225

    Article  CAS  Google Scholar 

  17. Lamiel C, Kharismadewi D, Shim J-J (2015) Covalently bonded reduced graphene oxide/polyaniline composite for electrochemical sensors and capacitors [J]. J Electroanal Chem 758:148–155

    Article  Google Scholar 

  18. Xu H, Wang L, Wen Q et al (2019) A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell [J]. Bioelectrochemistry 129:144–153

    Article  CAS  PubMed  Google Scholar 

  19. Mahmoud ME, Amira MF, Seleim SM et al (2019) Solvent free microwave synthesis of nano polyaniline-zirconium silicate nanocomposite for removal of nitro derivatives [J]. J Ind Eng Chem 77:371–384

    Article  CAS  Google Scholar 

  20. Li Z, Yin J, Gao C et al (2019) The construction of electrochemical aptasensor based on coral-like poly-aniline and Au nano-particles for the sensitive detection of prostate specific antigen [J]. Sens Actuators B Chem 295:93–100

    Article  CAS  Google Scholar 

  21. Taheri NN, Ramezanzadeh B, Mahdavian M (2019) Application of layer-by-layer assembled graphene oxide nanosheets/polyaniline/zinc cations for construction of an effective epoxy coating anti-corrosion system [J]. J Alloy Compd 800:532–549

    Article  CAS  Google Scholar 

  22. Yang N, Yang T, Wang W et al (2019) Polydopamine modified polyaniline-graphene oxide composite for enhancement of corrosion resistance [J]. J Hazard Mater 377:142–151

    Article  CAS  PubMed  Google Scholar 

  23. Sivakumar M, Sakthivel M, Chen S-M et al (2017) An electrochemical selective detection of nitrite sensor for polyaniline doped graphene oxide modified electrode [J]. Int J Electrochem Sci 12:4835–4846

    Article  CAS  Google Scholar 

  24. Yang Y, Kang M, Fang S et al (2015) Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions [J]. Sens Actuators B Chem 214:63–69

    Article  CAS  Google Scholar 

  25. Song J, Yin Z, Yang Z et al (2011) Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide–TiO2 junction [J]. Chem-Eur J 2011, 17(39):10832–7

  26. Loryuenyong V, Kaewmeesri P, Siritanon R et al (2019) The enhancement of photoanode efficiency in dye-sensitized solar cells with TiO2/graphene nanocomposite [J]. J Nanosci Nanotechnol 19(12):7702–7706

    Article  CAS  PubMed  Google Scholar 

  27. Vilímová P, Peikertová P, Kulhánková L et al (2019) Polyaniline as a precursor of multi-layer graphene: microscopic and microspectroscopic study [J]. J Nanosci Nanotechnol 19(12):7736–7747

    Article  PubMed  Google Scholar 

  28. Zhang Q, Yang P, Shen J et al (2019) Graphene-amplified photoelectric response of CdS nanoparticles for Cu2+ sensor [J]. J Nanosci Nanotechnol 19(12):7871–7878

    Article  CAS  PubMed  Google Scholar 

  29. Wei L, Chen W, Jia C et al (2019) Facile synthesis of CoNi bimetallic nanoparticle decorated reduced graphene oxide as efficient and low-cost counter electrode for dye-sensitized solar cells [J]. J Nanosci Nanotechnol 19(12):7790–7798

    Article  CAS  PubMed  Google Scholar 

  30. Beitollahi H, Garkani-Nejad F, Tajik S et al (2019) Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@ SiO2 nanocomposite [J]. Iran J Pharm Res 18(1):80

  31. Yuan R, Wu Y, Ju P et al (2019) Effect of polyaspartic acid-functionalized graphene oxide on the mechanical performance of polyimide-based composites [J]. J Appl Polym Sci 136(37):47939

    Article  Google Scholar 

  32. Ye Y, Yan W, Liu Y et al (2019) Electrochemical detection of Salmonella using an invA genosensor on polypyrrole-reduced graphene oxide modified glassy carbon electrode and AuNPs-horseradish peroxidase-streptavidin as nanotag [J]. Anal Chim Acta 1074:80–88

    Article  CAS  PubMed  Google Scholar 

  33. Tajik S, Beitollahi H (2019) A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode [J]. Anal Bioanal Chem Res 6(1):171–182

    CAS  Google Scholar 

  34. Khodavirdilo B, Samadi N, Ansari R (2019) Synthesis of graphene oxide-melamine–Tio oxalic acid nanocomposite and its application in the elimination of mercury (II) ions [J]. Iran Chem Commun (1, pp. 1–124, Serial No. 22):71–8

  35. Zheng J, Ma X, He X et al (2012) Preparation, characterizations, and its potential applications of PANi/ graphene oxide nanocomposite [J]. Procedia Eng 27:1478–1487

    Article  CAS  Google Scholar 

  36. Kumar V, Gupta RK, Gundampati RK et al (2018) Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle–reduced graphene oxide–polyaniline fabricated electrochemical sensor [J]. RSC Adv 8(2):619–631

    Article  Google Scholar 

  37. Mahadik M, Patil H, Bodkhe G et al (2020) EDTA modified PANI/GO composite based detection of Hg (II) ions [J]. Front Mater 7:81

  38. Han T, Han J-J, Ma H et al (2019) Synthesis of benzenesulfonated PANI/RGO as cathode material for rechargeable lithium-polymer batteries [J]. Ionics 25(10):4739–4749

    Article  CAS  Google Scholar 

  39. Han J-J, Zhang N, Liu D-L et al (2020) Cyclic voltammetry for the determination of the selectivity of PANI-HClO4 sensor to different acids [J]. Ionics 26(2):1029–1038

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Jun Han.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YF., Liu, DL., Han, JJ. et al. Detection of formaldehyde by cyclic voltammetry using a PANI/GO composite film–modified electrode. Ionics 28, 2457–2468 (2022). https://doi.org/10.1007/s11581-022-04499-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04499-2

Keywords

Navigation