Log in

Phenomenological description of strain relief in step-graded metamorphic buffer layers based on In x Al1 − x As ternary solutions

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Spatial distributions of the residual elastic strains in layers of step-graded metamorphic buffers of two different designs, grown via molecular beam epitaxy on the basis of In x Al1 − x As ternary solutions, are obtained by means of reciprocal space map**. It is shown that with allowance for work hardening, which affects strain relief in buffer layers and increases the strain in dislocation-free layers, the mechanism of strain relief in the final buffer steps, and the residual elastic strain in a buffer dislocation-free layer, are governed by the same phenomenological law as in a single-layer heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bugaev, A.S., Galiev, G.B., Mal’tsev, P.P., et al., Nano- Mikrosist. Tekh., 2012, no. 10, p. 14.

    Google Scholar 

  2. Tersoff, J., Appl. Phys. Lett., 1993, vol. 62, no. 7, p. 693.

    Article  ADS  Google Scholar 

  3. Andrews, A.M., Speck, J.S., Romanov, A.E., et al., J. Appl. Phys., 2002, vol. 91, no. 4, p. 1933.

    Article  ADS  Google Scholar 

  4. Gonzalez, D., Araujo, D., Aragon, G., and Garcia, R., Appl. Phys. Lett., 1997, vol. 71, no. 17, p. 2475.

    Article  ADS  Google Scholar 

  5. Dunstan, D.J., Kidd, P., Howard, L.K., and Dixon, R.H., Appl. Phys. Lett., 1991, vol. 59, no. 26, p. 3390.

    Article  ADS  Google Scholar 

  6. Dunstan, D.J., Kidd, P., Fewster, P.F., et al., Appl. Phys. Lett., 1994, vol. 65, no. 7, p. 839.

    Article  ADS  Google Scholar 

  7. Dunstan, D.J., Young, S., and Dixon, R.H., J. Appl. Phys., 1991, vol. 70, no. 6, p. 3039.

    Article  ADS  Google Scholar 

  8. Dunstan, D.J., J. Mater. Sci.: Mater. Electron., 1997, vol. 8, no. 6, p. 337.

    Google Scholar 

  9. Drigo, A.V., Audinli, A., Carnera, A., et al., J. Appl. Phys., 1989, vol. 66, no. 5, p. 1975.

    Article  ADS  Google Scholar 

  10. Kamigaki, K., Sakashita, H., Kato, H., et al., Appl. Phys. Lett., 1986, vol. 49, no. 17, p. 1071.

    Article  ADS  Google Scholar 

  11. Orders, P.J. and Usher, B.F., Appl. Phys. Lett., 1987, vol. 50, no. 15, p. 980.

    Article  ADS  Google Scholar 

  12. Maree, P.M.J., Barbour, J.C., van der Veen, J.F., et al., J. Appl. Phys., 1987, vol. 62, no. 11, p. 4413.

    Article  ADS  Google Scholar 

  13. Bowen, D.K. and Tanner, B.K., High Resolution X-ray Diffractometry and Topography, CRC Press, 1998.

    Google Scholar 

  14. Bushuev, V.A., Kyutt, R.N., and Khapachev, Yu.P., Fizicheskie printsipy rentgenodifraktometricheskogo opredeleniya parametrov real’noi struktury mnogosloinykh epitaksial’nykh plenok (Physical Principles of Determination of Parameters of the Real Structure of Multilayer Epitaxial Films by X-Ray Diffractometry), Nal’chik: Kabard.-Balkar. Gos. Univ., 1996, p. 76.

    Google Scholar 

  15. Rusakov, A.A., Rentgenografiya metallov (X-Ray Analysis of Metals), Moscow: Atomizdat, 1977, p. 81.

    Google Scholar 

  16. Ayers, J.E., Ghandhi, S.K., and Schowalter, L.J., J. Cryst. Growth, 1991, vol. 113, nos. 3–4, p. 430.

    Article  ADS  Google Scholar 

  17. Lee, D., Park, M.S., Tang, Z., et al., J. Appl. Phys., 2007, vol. 101, no. 6, p. 063523.

    Article  ADS  Google Scholar 

  18. Aleshin, A.N., Bugaev, A.S., Ermakova, M.A., and Ruban, O.A., Semiconductors, 2015, vol. 49, no. 8, p. 1039.

    Article  ADS  Google Scholar 

  19. Chauveau, J.-M., Androussi, Y., Lefebvre, A., et al., J. Appl. Phys., 2003, vol. 93, no. 7, p. 4219.

    Article  ADS  Google Scholar 

  20. Strel'chenko, S.S. and Lebedev, V.V., Soedineniya A3B5: spravochnik (A3B5 Compounds: Handbook), Moscow: Metallurgiya, 1984, p. 51.

    Google Scholar 

  21. Tu, K.N., Mayer, J.W., and Feldman, L.C., Electronic Thin Film Science: For Electrical Engineers and Materials Scientists, New York: Macmillan, 1992.

    Google Scholar 

  22. Cordier, Y. and Ferre, D., J. Cryst. Growth, 1999, vols. 201/202, p. 263.

    Article  ADS  Google Scholar 

  23. Dunstan, D.J., Philos. Mag. A, 1996, vol. 73, no. 5, p. 1323.

    Article  ADS  Google Scholar 

  24. Beanland, R., Dustan, D.J., and Goodhew, P.J., Adv. Phys., 1996, vol. 45, no. 2, p. 87.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aleshin.

Additional information

Original Russian Text © A.N. Aleshin, A.S. Bugaev, O.A. Ruban, N.V. Andreev, I.V. Shchetinin, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017, Vol. 81, No. 11, pp. 1442–1450.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A.N., Bugaev, A.S., Ruban, O.A. et al. Phenomenological description of strain relief in step-graded metamorphic buffer layers based on In x Al1 − x As ternary solutions. Bull. Russ. Acad. Sci. Phys. 81, 1295–1303 (2017). https://doi.org/10.3103/S106287381711003X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287381711003X

Navigation