Log in

Pressure-driven metallization with significant changes of structural and photoelectric properties in two-dimensional EuSbTe3

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Two-dimensional materials are widely considered to be highly promising for the development of photodetectors. To improve the performance of these devices, researchers often employ techniques such as defect engineering. Herein, pressure is employed as a clean and novel means to manipulate the structural and physical properties of EuSbTe3, an emerging two-dimensional semiconductor. The experimental results demonstrate that the structural phase transformation of EuSbTe3 occurs under pressure, with an increase in infrared reflectivity, a band gap closure, and a metallization at pressures. Combined with X-ray diffraction (XRD) and Raman characterizations, it is evident that the pressure-driven transition from semiconductor Pmmn phase to metallic Cmcm phase causes the disappearance of the charge density wave. Furthermore, at a mild pressure, approximately 2 GPa, the maximum photocurrent of EuSbTe3 is three times higher than that at ambient condition, suggesting an untapped potential for various practical applications.

Graphical abstract

摘要

二维材料在光电探测领域有着关键作用。为进一步提高二维光电材料的性能,缺陷工程等化学策略被广泛引入到材料合成中。在本文中,我们利用了一种新型的材料改性手段——压力,来操纵二维半导体EuSbTe3的结构和物理性质。结合X射线衍射和拉曼表征的实验结果可以证明,在压力下, EuSbTe3呈现出结构相变的特征;此外,材料的红外反射率增加,带隙减小,进而在较低的压力驱动下,电荷密度波消失,发生了半导体到金属的转变过程。在大约2 GPa的温和压力下,EuSbTe3的最大光电流是常压环境条件下的3倍,显示出在实际应用中的一定潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. **e Z, **ng C, Huang W, Fan T, Li Z, Zhao J, **ang Y, Guo Z, Li J, Yang Z, Dong B, Qu J, Fan D, Zhang H. Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv Func Mater. 2018;28(16):1705833. https://doi.org/10.1002/adfm.201705833.

    Article  CAS  Google Scholar 

  2. Zhang XL, Li J, Leng B, Yang L, Song YD, Feng SY, Feng LZ, Liu ZT, Fu ZW, Jiang X, Liu BD. High-performance ultraviolet-visible photodetector with high sensitivity and fast response speed based on MoS2-on-ZnO photogating heterojunction. Tungsten. 2023;5(1):91. https://doi.org/10.1007/s42864-022-00139-4.

    Article  CAS  Google Scholar 

  3. Wang G, Ma LJ, Lei BX, Wu H, Liu ZQ. Enhanced electron transport through two-dimensional Ti3C2 in dye-sensitized solar cells. Rare Met. 2022;41(9):3078. https://doi.org/10.1007/s12598-022-02018-w.

    Article  CAS  Google Scholar 

  4. Wu JM, Lv YP, Wu H, Zhang HS, Wang F, Zhang J, Wang JZ, Xu XH. Stable GeSe thin-film solar cells employing non-toxic SnO2 as buffer layer. Rare Met. 2022;41(9):2992. https://doi.org/10.1007/s12598-022-02005-1.

    Article  CAS  Google Scholar 

  5. Khan A, Nilam B, Rukhsar C, Sayali G, Mandlekar B, Kadam A. A review article based on composite graphene @ tungsten oxide thin films for various applications. Tungsten. 2023;5(4):391. https://doi.org/10.1007/s42864-022-00158-1.

    Article  Google Scholar 

  6. Liu X, Galfsky T, Sun Z, **a F, Lin EC, Lee Y-H, Kéna-Cohen S, Menon VM. Strong light–matter coupling in two-dimensional atomic crystals. Nat Photonics. 2015;9(1):30. https://doi.org/10.1038/nphoton.2014.304.

    Article  CAS  Google Scholar 

  7. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK. Fine structure constant defines visual transparency of graphene. Science. 2008;320(5881):1308. https://doi.org/10.1126/science.1156965.

    Article  CAS  PubMed  Google Scholar 

  8. Massicotte M, Schmidt P, Vialla F, Schadler KG, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij KJ, Koppens FH. Picosecond photoresponse in van der Waals heterostructures. Nat Nanotechnol. 2016;11(1):42. https://doi.org/10.1038/nnano.2015.227.

    Article  CAS  PubMed  Google Scholar 

  9. Das S, Sebastian A, Pop E, McClellan CJ, Franklin AD, Grasser T, Knobloch T, Illarionov Y, Penumatcha AV, Appenzeller J, Chen Z, Zhu W, Asselberghs I, Li LJ, Avci UE, Bhat N, Anthopoulos TD, Singh R. Transistors based on two-dimensional materials for future integrated circuits. Nat Electron. 2021;4(11):786. https://doi.org/10.1038/s41928-021-00670-1.

    Article  CAS  Google Scholar 

  10. Hong J, ** C, Yuan J, Zhang Z. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv Mater. 2017;29(14):1606434. https://doi.org/10.1002/adma.201606434.

    Article  CAS  Google Scholar 

  11. Hu Z, Wu Z, Han C, He J, Ni Z, Chen W. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev. 2018;47(9):3100. https://doi.org/10.1039/c8cs00024g.

    Article  CAS  PubMed  Google Scholar 

  12. Tran TU, Nguyen DA, Duong NT, Park DY, Nguyen DH, Nguyen PH, Park C, Lee J, Ahn BW, Im H, Lim SC, Jeong MS. Gate tunable photoresponse of a two-dimensional p-n junction for high performance broadband photodetector. Appl Mater Today. 2022;26:101285. https://doi.org/10.1016/j.apmt.2021.101285.

    Article  Google Scholar 

  13. Wu J, Ma H, Yin P, Ge Y, Zhang Y, Li L, Zhang H, Lin H. Two-dimensional materials for integrated photonics: recent advances and future challenges. Small Sci. 2021;1(4):2000053. https://doi.org/10.1002/smsc.202000053.

    Article  CAS  Google Scholar 

  14. Wu D, Guo J, Wang C, Ren X, Chen Y, Lin P, Zeng L, Shi Z, Li XJ, Shan CX, Jie J. Ultrabroadband and high-detectivity photodetector based on Ws2/Ge heterojunction through defect engineering and interface passivation. ACS Nano. 2021;15(6):10119. https://doi.org/10.1021/acsnano.1c02007.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang J, Ling C, Xu T, Wang W, Niu X, Zafar A, Yan Z, Wang X, You Y, Sun L, Lu J, Wang J, Ni Z. Defect engineering for modulating the trap states in 2D photoconductors. Adv Mater. 2018;30(40):1804332. https://doi.org/10.1002/adma.201804332.

    Article  CAS  Google Scholar 

  16. Li SC, Wang QL, Yao Y, Sang DD, Zhang HW, Zhang GZ, Wang C, Liu CL. Application of high-pressure technology in exploring mechanical properties of high-entroy alloys. Tungsten. 2023;5(1):50. https://doi.org/10.1007/s42864-021-00132-3.

    Article  Google Scholar 

  17. Pandey T, Nayak AP, Liu J, Moran ST, Kim J-S, Li L-J, Lin J-F, Akinwande D, Singh AK. Pressure-induced charge transfer do** of monolayer graphene/Mos2 heterostructure. Small. 2016;36:43. https://doi.org/10.1002/smll.201600808.

    Article  CAS  Google Scholar 

  18. Segura A, Cuscó R, Taniguchi T, Watanabe K, Cassabois G, Gil B, Artús L. High-pressure softening of the out-of-plane A2u(transverse-optic) mode of hexagonal boron nitride induced by dynamical buckling. J Phys Chem C. 2019;123(28):17491. https://doi.org/10.1021/acs.jpcc.9b04582.

    Article  CAS  Google Scholar 

  19. Xue Y, Wang H, Tan Q, Zhang J, Yu T, Ding K, Jiang D, Dou X, Shi JJ, Sun BQ. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes. ACS Nano. 2018;12(7):7127. https://doi.org/10.1021/acsnano.8b02970.

    Article  CAS  PubMed  Google Scholar 

  20. Kürkçü C, Yamçıçıer Ç. Structural, electronic, elastic and vibrational properties of two dimensional graphene-like BN under high pressure. Solid State Commun. 2019;303:113740. https://doi.org/10.1016/j.ssc.2019.113740.

    Article  CAS  Google Scholar 

  21. Feng B, Levitas VI. Coupled elastoplasticity and plastic strain-induced phase transformation under high pressure and large strains: formulation and application to BN sample compressed in a diamond anvil cell. Int J Plast. 2017;96:156. https://doi.org/10.1016/j.ijplas.2017.05.002.

    Article  CAS  Google Scholar 

  22. Huang H, Fan X, Singh DJ, Zheng W. Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale. 2020;12(3):1247. https://doi.org/10.1039/c9nr08313h.

    Article  CAS  PubMed  Google Scholar 

  23. Geng T, Ma Z, Chen Y, Cao Y, Lv P, Li N, **ao G. Bandgap engineering in two-dimensional halide perovskite Cs3Sb2I9 nanocrystals under pressure. Nanoscale. 2020;12(3):1425. https://doi.org/10.1039/c9nr09533k.

    Article  CAS  PubMed  Google Scholar 

  24. Liu S, Sun S, Gan CK, Del Águila AG, Fang Y, **ng J, Do TTH, White TJ, Li H, Huang W. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci Adv. 2019;5(7):eaav9445. https://doi.org/10.1126/sciadv.aav9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo S, Bu K, Li J, Hu Q, Luo H, He Y, Wu Y, Zhang D, Zhao Y, Yang W. Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features. J Am Chem Soc. 2021;143(6):2545. https://doi.org/10.1021/jacs.0c11730.

    Article  CAS  PubMed  Google Scholar 

  26. Liu G, Gong J, Kong L, Schaller RD, Hu Q, Liu Z, Yan S, Yang W, Stoumpos CC, Kanatzidis MG, Mao HK, Xu T. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. In: Proceedings of the national academy of sciences of the United States of America. 2018;115(32):8076. https://doi.org/10.1073/pnas.1809167115.

  27. Joseph B, Caramazza S, Capitani F, Clarté T, Ripanti F, Lotti P, Lausi A, Di Castro D, Postorino P, Dore P. Coexistence of pressure-induced structural phases in bulk black phosphorus: a combined X-ray diffraction and Raman study up to 18 GPa. J Phys Condens Matter. 2018;30(49):494002. https://doi.org/10.1088/1361-648X/aaebe5.

    Article  CAS  PubMed  Google Scholar 

  28. Gupta SN, Singh A, Pal K, Chakraborti B, Muthu D, Waghmare U, Sood A. Raman anomalies as signatures of pressure induced electronic topological and structural transitions in black phosphorus: experiments and theory. Phys Rev B. 2017;96(9):094104. https://doi.org/10.1103/PhysRevB.96.094104.

    Article  Google Scholar 

  29. Yan Z, Yang H, Yang Z, Ji C, Zhang G, Tu Y, Du G, Cai S, Lin S. Emerging two-dimensional tellurene and tellurides for broadband photodetectors. Small. 2022;18(20):2200016. https://doi.org/10.1002/smll.202200016.

    Article  CAS  Google Scholar 

  30. Niu YY, Wu D, Shen L, Wang B. A layered antiferromagnetic semiconductor EuMTe3. Physica Status Solidi (RRL) Rapid Res Lett. 2015;9(12):735. https://doi.org/10.1002/pssr.201510344.

    Article  CAS  Google Scholar 

  31. Prescher C, Prakapenka VB. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res. 2015;35(3):223. https://doi.org/10.1080/08957959.2015.1059835.

    Article  CAS  Google Scholar 

  32. Toby BH, Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr. 2013;46(2):544. https://doi.org/10.1107/s0021889813003531.

    Article  CAS  Google Scholar 

  33. Katsura T, Tange Y. A simple derivation of the birch–murnaghan equations of state (EOSs) and comparison with EOSs derived from other definitions of finite strain. Minerals. 2019;9(12):745. https://doi.org/10.3390/min9120745.

    Article  CAS  Google Scholar 

  34. Fang Y, Kong L, Wang R, Zhang Z, Li Z, Wu Y, Bu K, Liu X, Yan S, Hattori T, Li N, Li K, Liu G, Huang F. Pressure engineering of van der Waals compound RhI3: bandgap narrowing, metallization, and remarkable enhancement of photoelectric activity. Mater Today Phys. 2023;34:101083. https://doi.org/10.1016/j.mtphys.2023.101083.

    Article  CAS  Google Scholar 

  35. Jaffe A, Lin Y, Mao WL, Karunadasa HI. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J Am Chem Soc. 2017;139(12):4330. https://doi.org/10.1021/jacs.7b01162.

    Article  CAS  PubMed  Google Scholar 

  36. Luo Y, Shi Y, Wu M, Wu Y, Wang K, Tu B, Huang H. Pressure-induced phase transitions and metallization in layered SnSe. Appl Phys Lett. 2023;123(9):094101. https://doi.org/10.1063/5.0166387.

    Article  CAS  Google Scholar 

  37. Kopaczek J, Li H, Yumigeta K, Sailus R, Sayyad MY, Moosavy STR, Kudrawiec R, Tongay S. Pressure-induced suppression of charge density phases across the entire rare-earth tritellurides by optical spectroscopy. J Mater Chem C. 2022;10(33):11995. https://doi.org/10.1039/d2tc02137d.

    Article  CAS  Google Scholar 

  38. Yomo R, Yamaya K, Abliz M, Hedo M, Uwatoko Y. Pressure effect on competition between charge density wave and superconductivity in ZrTe3: appearance of pressure-induced reentrant superconductivity. Phys Rev B. 2005;71(13):132508. https://doi.org/10.1103/PhysRevB.71.132508.

    Article  CAS  Google Scholar 

  39. Wu D, Liu QM, Chen SL, Zhong GY, Su J, Shi LY, Tong L, Xu G, Gao P, Wang NL. Layered semiconductor EuTe4 with charge density wave order in square tellurium sheets. Phys Rev Mater. 2019;3(2):024002. https://doi.org/10.1103/PhysRevMaterials.3.024002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. U2130116), Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), China (No. 22dz2260800), and Shanghai Science and Technology Committee, China (No. 22JC1410300). High-pressure XRD characterizations were performed at Shanghai Synchrotron Radiation Facility (SSRF) beamline 15U. The authors acknowledge Dr. Junyue Wang (HPSTAR), Ms. Xueyan Du (HPSTAR), Dr. Lili Zhang (SSRF), Dr. Haiyun Shu (HPSTAR), and Ms. Huiru Tian (HPSTAR) for their experimental help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-** Kong, Xuan Fang, Wei He or Gang Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3722 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, ZK., Li, ZY., Qin, Z. et al. Pressure-driven metallization with significant changes of structural and photoelectric properties in two-dimensional EuSbTe3. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02812-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02812-8

Keywords

Navigation