Log in

Genic SSR Development and Diversity Assessment of Persian Halophytic Grass, Aeluropus littoralis

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Aeluropus littoralis is a valuable halophyte grass belonging to the same family of wheat and is used as forage. Although A. littoralis has the potential to become an important genetic resource for improving salt and drought tolerance in economically important crops, no SSR markers have been developed for it. The main goal was to rapidly develop a set of genic SSR markers for A. littoralis. Repeat analysis of non-redundant EST sequences of Aeluropus and transferability assessment of 110 SSR-rich loci from rice and wheat were used to identify EST-SSRs. Then selected EST-SSR loci and some physiological traits includings Na+, K+ and Ash content were utilized for marker characterization and assessment of genetic diversity among A. littoralis accessions collected from all around the country. The results showed that 6.7% of EST records of A. littoralis comprising SSR motifs which was used for desiging 18 primer pairs (ALES). In addition 48 SSR loci (GDES) from 110 of the gramineae were shown to be transferable to A. littoralis based on the PCR profiles. Finally, genotypic clustering based on EST-SSR markers divided the accessions into seven groups. The accessions were also categorized into six groups according to the physiological traits. Our finding indicated that there are remarkable variations about 33% in coding regions of Iranian Aeluropus accessions. The results of both genotypic and physiologic clustering were partially consistent and most groups corresponded to geographic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Khodashenas, M., Aeluropus peterganicus (Poaceae), a new species from Iran, Iran. J. Bot., 2008, vol. 14, no. 1, pp. 13–15.

    Google Scholar 

  2. Khodashenas, M., Two new records and a new combination of the genus Aeluropus Trin (Poaceae) for the flora of Iran, Iran. J. Bot., 2009, vol. 15, no. 1, pp. 61–62.

    Google Scholar 

  3. Watson, L. and Dallwitz, M.J., The Grass Genera of the World, Wallingford: CAB Int., 1992. https://doi.org/10.1017/S0021859600076668

  4. Zouari, N., Saad, R.B., Legavre, T., Azaza, J., Sabau, X., Jaoua, M., Masmoudi, K., and Hassairi, A., Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis, Gene, 2007, vol. 404, nos. 1–2, pp. 61–69. https://doi.org/10.1016/j.gene.2007.08.021

    Article  CAS  PubMed  Google Scholar 

  5. Barhoumi, Z., Djebali, W., Abdelly, C., Chaïbi, W., and Smaoui, A., Ultrastructure of Aeluropus littoralis leaf salt glands under NaCl stress, Protoplasma, 2008, vol. 233, nos. 3–4, pp. 195–202. https://doi.org/10.1007/s00709-008-0003-x

    Article  CAS  PubMed  Google Scholar 

  6. Nasiri, N., Shokri, E., and Nematzadeh, G.A., Aeluropus littoralis NaCl-induced vacuolar H+-ATPase Subunit c: Molecular cloning and expression analysis, Russ. J. Genet., 2012, vol. 48, no. 12, pp. 1199–1206. https://doi.org/10.1134/S1022795412080054

    Article  CAS  Google Scholar 

  7. Younesi-Melerdi, E., Nematzadeh, G., and Shokri, E., Codon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis, J. Plant Mol. Breed., 2014, vol. 2, no. 1, pp. 12–20. https://doi.org/10.22058/JPMB.2014.8425

    Article  Google Scholar 

  8. Wang, I.J., Glor, R.E., and Losos, J.B., Quantifying the roles of ecology and geography in spatial genetic divergence, Ecol. Lett., 2013, vol. 16, no. 2, pp. 175–182. https://doi.org/10.1111/ele.12025

    Article  PubMed  Google Scholar 

  9. Singh, R.K., Jena, S.N., Khan, S., Yadav, S., Banarjee, N., Raghuvanshi, S., Bhardwaj, V., Dattamajumder, S.K., Kapur, R., Solomon, S., and Swapna, M., Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane, Gene, 2013, vol. 524, no. 2, pp. 309–329. https://doi.org/10.1016/j.gene.2013.03.125

    Article  CAS  PubMed  Google Scholar 

  10. Ebrahimi, S., Seyed, T.B., and Sharif, N.B., Microsatellite isolation and characterization in pomegranate (Punica granatum L.), Iran. J. Biotechnol., 2010, vol. 8, no. 3, pp. 156–163.

    CAS  Google Scholar 

  11. Ma, J.Q., Ma, C.L., Yao, M.Z., **, J.Q., Wang, Z.L., Wang, X.C., and Chen, L., Microsatellite markers from tea plant expressed sequence tags (ESTs) and their applicability for cross-species/genera amplification and genetic map**, Sci. Hortic. (Amsterdam, Neth.), 2012, vol. 134, no. 1, pp. 167–175. https://doi.org/10.1016/j.scienta.2011.10.029

  12. Parthiban, S., Govindaraj, P., and Senthilkumar, S., Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane, 3 Biotech, 2018, vol. 8, no. 3, pp. 144–150. https://doi.org/10.1007/s13205-018-1172-8

  13. Mohammadzadeh, F., Monirifar, H., Saba, J., Valizadeh, M., Haghighi, A.R., Zanjani, B.M., Barghi, M., and Tarhriz, V., Genetic variation among Iranian alfalfa (Medicago sativa L.) populations based on RAPD markers, Bangladesh J. Plant Taxon., 2011, vol. 18, no. 2, pp. 93–104. https://doi.org/10.3329/bjpt.v18i2.9296

    Article  Google Scholar 

  14. Zhou, Q., Luo, D., Ma, L., **e, W., Wang, Y., Wang, Y., and Liu, Z., Development and cross-species transferability of EST-SSR markers in Siberian wildrye (Elymus sibiricus L.) using Illumina sequencing, Sci. Rep., 2016, vol. 6, p. 20549. https://doi.org/10.1038/srep20549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, C., Fan, B., Cao, Z., Su, Q., Wang, Y.A., Zhang, Z., Wu, J., and Tian, J., A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata), J. Genet., 2016, vol. 95, no. 3, pp. 527–535. https://doi.org/10.1007/s12041-016-0663-9

    Article  CAS  PubMed  Google Scholar 

  16. Salimi, H., Bahar, M., Mirlohi, A., and Talebi, M., Assessment of the genetic diversity among potato cultivars from different geographical areas using the genomic and EST microsatellites, Iran. J. Biotechnol., 2016, vol. 14, no 4, p. 270. https://doi.org/10.15171/ijb.1280

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kantety, R.V., LaRota, M., Matthews, D.E., and Sorrells, M.E., Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat, Plant Mol. Biol. Rep., 2002, vol. 48, no. 5, pp. 501–510. https://doi.org/10.1023/A:1014875206165

    Article  CAS  Google Scholar 

  18. Yang, Z.J., Peng, Z.S., and Yang, H., Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.), Genet. Mol. Res., 2016, vol. 15, no. 1, p. 15017509. https://doi.org/10.4238/gmr.15017509

    Article  CAS  Google Scholar 

  19. Jo, W.S., Kim, H.Y., and Kim, K.M., Development and characterization of polymorphic EST based SSR markers in barley (Hordeum vulgare), 3 Biotech, 2017, vol. 7, no. 4, p. 265. https://doi.org/10.1007/s13205-017-0899-y

  20. Yu, J.K., LaRota, M., Kantety, R.V., and Sorrells, M.E., EST derived SSR markers for comparative map** in wheat and rice, Mol. Genet. Genomics, 2004, vol. 271, no. 6, pp. 742–751. https://doi.org/10.1007/s00438-004-1027-3

    Article  CAS  PubMed  Google Scholar 

  21. Ukoskit, K., Posudsavang, G., Pongsiripat, N., Chatwachirawong, P., Klomsa-ard, P., Poomipant, P., and Tragoonrung, S., Detection and validation of EST-SSR markers associated with sugar-related traits in sugarcane using linkage and association map**, Genomics, 2019, vol. 111, no. 1, pp. 1–9. https://www.sciencedirect.com/science/article/pii/S0888754318300272.

    Article  CAS  PubMed  Google Scholar 

  22. Ashraf, J., Malik, W., Iqbal, M.Z., Ali, K.A., Qayyum, A., Noor, E., Abid, M.A., Naseer, C.H., and Ahmad, M.Q., Comparative analysis of genetic diversity among Bt cotton genotypes using EST-SSR, ISSR and morphological markers, J. Agric. Sci. Technol., 2016, vol. 18, no. 2, pp. 517–531.

    Google Scholar 

  23. Arbeiter, A.B., Hladnik, M., Jakše, J., and Bandelj, D., Identification and validation of novel EST-SSR markers in olives, Sci. Agric., 2017, vol. 74, no. 3, pp. 215–225. https://doi.org/10.1590/1678-992x-2016-0111

    Article  CAS  Google Scholar 

  24. Jiang, Y., Li, H., Zhang, J., **ang, J., Cheng, R., and Liu, G., Whole Genomic EST-SSR development based on high-throughput transcript sequencing in Proso millet (Panicum miliaceum), Int. J. Agric. Biol., 2018, vol. 20, no. 3, pp. 617–620. https://doi.org/10.17957/IJAB/15.0531

    Article  Google Scholar 

  25. Wu, B.D., Fan, R., Hu, L.S., Wu, H.S., and Hao, C.Y., Genetic diversity in the germplasm of black pepper determined by EST-SSR markers, Genet. Mol. Res., 2016, vol. 15, no. 1, p. 8099. https://doi.org/10.4238/gmr.15018099

    Article  CAS  Google Scholar 

  26. García-Gómez, B., Razi, M., Salazar, J.A., Prudencio, A.S., Ruiz, D., Dondini, L., and Martínez-Gómez, P., Comparative analysis of SSR markers developed in exon, intron, and intergenic regions and distributed in regions controlling fruit quality traits in Prunus species: genetic diversity and association studies, Plant Mol. Biol. Rep., 2018, vol. 36, no. 1, pp. 23–35. https://doi.org/10.1007/s11105-017-1058-7

    Article  CAS  Google Scholar 

  27. Wang, M.L., Dzievit, M., Chen, Z., Morris, J.B., Norris, J.E., Barkley, N.A., Tonnis, B., and GA, Yu, J., Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers, Genome, 2016, vol. 60, no. 3, pp. 193–200. https://doi.org/10.1139/gen-2016-0116

    Article  CAS  PubMed  Google Scholar 

  28. Chai, L., Biswas, M.K., Yi, H., Guo, W., and Deng, X., Transferability, polymorphism and effectiveness for genetic map** of the Pummelo (Citrus grandis Osbeck) EST-SSR markers, Sci. Hortic. (Amsterdam, Neth.), 2013, vol. 155, pp. 85–91. https://doi.org/10.1016/j.scienta.2013.02.024

  29. Yu, J.K., Dake, T.M., Singh, S., Benscher, D., Li, W., Gill, B., and Sorrells, M.E., Development and map** of EST-derived simple sequence repeat markers for hexaploid wheat, Genome, 2004, vol. 47, no. 5, pp. 805–818. https://doi.org/10.1139/g04-057

    Article  CAS  PubMed  Google Scholar 

  30. Dellaporta, S.L., Wood, J., and Hicks, J.B., A plant DNA minipreparation: Version II, Plant Mol. Biol. Rep., 1983, vol. 1, no. 4, pp. 19–21. https://doi.org/10.1007/BF02712670

    Article  CAS  Google Scholar 

  31. Rohlf, F.J., Numeric taxonomy and multivariate analysis system NTSys-PC Version 1.80 Exeter Software, 1993.

  32. Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 10, pp. 5269–5273. https://doi.org/10.1073/pnas.76.10.5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Excoffier, L., Smouse, P.E., and Quattro, J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, 1992, vol. 131, no. 2, pp. 479–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rahemi, A., Fatahi, R., Ebadi, A., Taghavi, T., Hassani, D., Gradziel, T., Folta, K., and Chaparro, J., Genetic diversity of some wild almonds and related Prunus species revealed by SSR and EST-SSR molecular markers, Plant Syst. Evol., 2012, vol. 298, no. 1, pp. 173–192. https://doi.org/10.1007/s00606-011-0536-x

    Article  CAS  Google Scholar 

  35. Ahmadi, J. and Fotokian, M.H., Identification and map** of quantitative trait loci associated with salinity tolerance in rice (Oryza sativa) using SSR markers, Iran. J. Biotechnol., 2011, vol. 9, no. 1, pp. 21–30.

    CAS  Google Scholar 

  36. Wang, J., Chen, Z., **, S., Hu, Z., Huang, Y., and Diao, Y., Development and characterization of simple sequence repeat (SSR) markers based on a full-length cDNA library of Napier Grass (Pennisetum purpureum Schum), Gene Genomics, 2017, vol. 39, no. 12, pp. 1297–1305. https://doi.org/10.1007/s13258-017-0536-5

    Article  CAS  Google Scholar 

  37. **, J.Q., Li, S.F., Gong, X.C., Lu, M.Z., Yao, Y.L., **n, Y., and Cui, H.R., Analysis of SSR information in EST resource of tea plants (Camellia sinensis), Bull. Sci. Technol., 2006, vol. 4, pp. 471–476.

    Google Scholar 

  38. Zhu, Y., Hao, Y., Wang, K., Wu, C., Wang, W., Qi, J., and Zhou, J., Analysis of SSRs information and development of SSR markers from walnut ESTs, Int. J. Fruit Sci., 2009, vol. 26, no. 3, pp. 394–398.

    CAS  Google Scholar 

  39. Shamasbi, F.V., Nasiri, N., and Shokri, E., Genetic diversity of Persian ecotypes of Indian walnut (Aeluropus littoralis (Gouan) Pari.) by AFLP and ISSR markers, Cytol. Genet., 2018, vol. 52, no. 3, pp. 222–230. https://doi.org/10.3103/S009545271803012X

    Article  Google Scholar 

  40. Cortese, L.M., Honig, J., Miller, C., and Bonos, S.A., Genetic diversity of twelve switchgrass populations using molecular and morphological markers, BioEnergy Res., 2010, vol. 3, no. 3, pp. 262–271. https://doi.org/10.1007/s12155-010-9078-2

    Article  Google Scholar 

Download references

Funding

This work was funded by the Genetics and Agricultural Biotechnology, Institute of Tabarestan (GABIT).

Author information

Authors and Affiliations

Authors

Contributions

Authors have contributed equally to this manuscript.

Corresponding author

Correspondence to Ehsan Shokri.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meidansary, M., Nasiri, N., Shokri, E. et al. Genic SSR Development and Diversity Assessment of Persian Halophytic Grass, Aeluropus littoralis. Cytol. Genet. 57, 320–334 (2023). https://doi.org/10.3103/S0095452723040096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723040096

Navigation