Log in

Development of genome-wide SSR markers in horsegram and their use for genetic diversity and cross-transferability analysis

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Horsegram [Macrotyloma uniflorum (Lam.) Verdc.] commonly known as kulthi or Madras gram is an important drought tolerant legume crop used as food and fodder in India and across the globe. Horsegram is tolerant to many biotic and abiotic stresses and considered a potential future food legume. Despite being a multiutility crop, insufficient genomic information is available in this species, which is otherwise required for genetic improvement. Hence, in the present work we used next-generation sequencing (NGS) technology for genome-wide development and characterization of novel simple sequence repeat (SSR) markers in horsegram. In all, 2458 SSR primer pairs were designed from NGS data and 117 SSRs were characterized in 48 diverse lines of horsegram. Cross-transferability of these markers was also checked in nine related legume species. The polymorphic SSRs revealed high diversity measures such as mean values of expected heterozygosity (He; 0.54), observed heterozygosity (Ho; 0.64), and polymorphism information content (PIC; 0.46). Analysis of molecular variance (AMOVA) revealed high degree of genetic variance within the populations. Dendrogram based on Jaccard’s similarity coefficient and principal component analysis (PCA) revealed two groups in the analyzed accessions. This observation was further confirmed by Bayesian genetic STRUCTURE analysis. The SSR markers developed herein can be used in diverse genetic analysis including association map** in this crop and also in related legume crops with limited marker resources. Hence, this new SSR dataset can be useful for molecular breeding research in this underutilized pulse crop. In addition, genetic diversity estimates of analyzed germplasm can be important for devising future breeding programmes in horsegram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant. Sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  • Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses, and nodulation. Univeristy of Wisconsin Press, Madison,WI, USA, p 446

    Book  Google Scholar 

  • Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK (2013) Comprehensive transcriptomic study on horsegram (Macrotyloma uniflorum): de novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics 14:647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenthal MJ, Staples IB (1993) Origin, evaluation and use of Macrotyloma as forage-a review. Tropical Grassl 27:16–29

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet 32(3):314–331

    CAS  Google Scholar 

  • Chaitanya DAK, Kumar S, Reddy M, Mukherjee AM, Sumanth NSV, Ramesh DA (2010) Anti urolithiatic activity of Macrotyloma uniflorum seed extract on ethylene glycol induced urolithiasis in albino rats. J Innovative Trends Pharma Sci 1:216–226

    Google Scholar 

  • Chung AM, Staub JE, Chen JF (2006) Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49:219–229

    Article  CAS  PubMed  Google Scholar 

  • Divya Shikha (2015) Analysis of genetic diversity and population structure in horsegram (Macrotyloma uniflorum) germplasm using SSR markers. MSc Thesis, P 87. Department of Agricultural Biotechnology, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India

  • Doyle JJ, Doyle JE (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Gopalan C, Ramashastri BV, Balasubramanyan SC (1989) Nutritive value of Indian foods. Hyderabad, India: National Institute of Nutrition, ICMR P 156

  • Gutierrez MV, VazPatto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217

    Article  CAS  PubMed  Google Scholar 

  • Hamada HM, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. PNAS 79(21):6465–6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He G, Woullard FE, Marong I, Guo BZ (2006) Transferability of soybean SSR markers in peanut (Arachis hypogaea L.) Peanut Sci 33:22–28

    Article  Google Scholar 

  • Jayaraj AP, Tovey FI, Lewin MR, Clark GC (2000) Duodenal ulcer prevalence: experimental evidence for possible role of dietary lipids. J Gastroenterol Hepatol 15:610–616

    Article  CAS  PubMed  Google Scholar 

  • Kadam SS, Salunkhe DK, Maga JA (1985) Nutritional composition, processing, and utilization of horsegram and moth bean. Critical Rev Food Sci Nutri 22:1–26

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshell TC (2007) Revising how the computer program CERVUS accommodates genoty** error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Lackey JA (1981) Phaseoleae. In: advances in legume Systematics. (RM Polhil and PH raven, eds). Royal Botanic Gardens, Kew, UK, pp 301–327

    Google Scholar 

  • Mehra A, Upadhyaya M (2013) Macrotyloma uniflorum Lam. Traditional crop of kumaun Himalaya and ethnobotanical perspectives. Int J Agril Food Sci 3(4):148–150

    Google Scholar 

  • Morris JB (2008) Macrotyloma axillare And M. uniflorum: descriptor analysis, anthocyanin indexes, and potential uses. Genet Resour Crop Evol 55:5–8

    Article  Google Scholar 

  • Murthy SM, Devaraj V, Anitha RP, Tejavathi DH (2012) Studies on the activities of antioxidant enzymes under induced drought stress in vivo and in vitro plants of Macrotyloma uniflorum (lam.) Verdc. Recent Res Sci Tech 4:34–37

    CAS  Google Scholar 

  • Neelam S, Kumar V, Natarajan S, Venkateshwaran K, Pandravada SR (2014) Evaluation and diversity observed in Horsegram (Macrotyloma uniflorum (lam) Verdc.) Germplasm from Andhra Pradesh, India. Int J Plant Res 4(1):17–22

    Google Scholar 

  • Oram RN (1990) Register of Australian herbage plant cultivars. edition. Melbourne, Australia, The Common wealth Scientific and Industrial Research Organisation

  • Patel DP, Dabas BS, Sapraandal RS (1995) Evaluation of Horsegram (Macrotyloma uniflorum Lam.) germplasm. In: National Bureau of Plant Genetic Resources Publication, New Delhi, India

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/ Darwin

  • Prakash BG, Guled MB, Bhosale AM (2008) Identification of suitable horsegram varieties for northern dry zone of karnataka. Karnataka J Agril Sci 21(3):343–345

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  CAS  PubMed  Google Scholar 

  • Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram RM (2007) Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformatics 23:1–4

    Article  CAS  PubMed  Google Scholar 

  • Ramesh CK, Rehman A, Prabhakar BT, Vijay ABR, Aditya SJ (2011) Antioxidant potential in sprout vs. seeds of Vigina radiate and Macrotyloma uniflorum. J Appl Pharma Sci 1:99–103

    Google Scholar 

  • Reddy MRK, Rathour R, Kumar N, Katoch P, Sharma TR (2010) Cross-genera legume SSR markers for analysis of genetic diversity in lens species. Plant Breed 129:514–518

    CAS  Google Scholar 

  • Reddy PCO, Sairanganayakulu G, Thippeswamy M, Reddy PS, Reddy MK, Sudhakar C (2008) Identification of stress induced genes from the drought tolerant semi-arid legume crop horsegram (Macrotyloma uniflorum (lam.) Verdc.) through analysis of subtracted expressed sequence tags. Plant Sci 175:372–384

    Article  CAS  Google Scholar 

  • Sharma V, Rana M, Katoch M, Sharma PK, Ghani M, Rana JC, Sharma TR, Chahota RK (2015a) Development of SSR and ILP markers in horsegram (Macrotyloma uniflorum), their characterization, cross-transferability and relevance for map**. Mol Breed 35:102

    Article  Google Scholar 

  • Sharma V, Sharma TR, Rana JC, and Chahota RK. (2015b) Analysis of Genetic Diversity and Population Structure in Horsegram (Macrotyloma uniflorum) Using RAPD and ISSR. Agril Res: 1-10

  • Smartt J (1990) Grain legumes: evolution and genetic resources. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Sodani SN, Paliwal RV, Jain LK. (2004) Phenotypic stability for seed yield in rain fed horsegram (Macrotyloma uniflorum). Proceedings of the National Symposium on Arid legumes for sustainable Agriculture and Trade; Jodhpur, Rajasthan, India: Central Arid Zone Research institute

  • Soranzo N, Provan J, Powell W (1999) An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42:158–161

    Article  CAS  PubMed  Google Scholar 

  • Sosulski F, Young CG (1979) Field and functional properties of air classified protein and starch fraction from eight legume flours. J Am Oil Chem Soc 56:292–295

    Article  CAS  PubMed  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55

    Article  CAS  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian J Bot 129:157

    Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the Department of Biotechnology (DBT), Department of Science and Technology (DST), Government of India and Japanese Society for Promotion of Science (JSPS) for providing financial support to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilak Raj Sharma.

Electronic supplementary material

Supplementary Table 1

(DOC 28 kb)

Supplementary Table 2

(DOC 212 kb)

Supplementary Table 3

(DOC 2757 kb)

Supplementary Fig. 1

Polymorphism shown in amplification profiles of 48 horsegram genotypes generated by newly developed markers a) MUGSSR-530 b) MUGSSR-32 c) MUGSSR-546 and d) Cross-transferability of MUGSSR-542 in nine releated species namely- M. gharwalensis, Cicer arietinum, Vigna unguiculata, Lens culinaris, Vigna mungo, Pisum sativum, Trifolium pratense, Vigna umbelleta and Phaseolu vulgaris (DOC 79 kb)

Supplementary Fig. 2

Percentage of species-wise cross-transferability observed in nine selected related species (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaldate, R., Rana, M., Sharma, V. et al. Development of genome-wide SSR markers in horsegram and their use for genetic diversity and cross-transferability analysis. Mol Breeding 37, 103 (2017). https://doi.org/10.1007/s11032-017-0701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0701-1

Keywords

Navigation