Log in

Sorption-Fluorimetric Determination of Quinolones in Waste and Natural Waters with a Smartphone

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

A simple, affordable, and safe (green chemistry) method is proposed for determining 17 quinolone antibiotics in waste and natural waters by the sorption-fluorimetric method using a smartphone as an analyte signal recorder. The method is based on static sorption of quinolones by silica gel from aqueous solutions. When the sorbate is irradiated with ultraviolet light (365 nm), blue or turquoise fluorescence is observed, the intensity of which is measured with a smartphone. The values of the basic components of the RGB colorimetric system are used as an analytical signal, followed by the calculation of the final color. The limits of detection and quantification are 0.0007–0.004 and 0.002–0.01 μg/mL, respectively, for all analyzed analytes. The range of the determined contents is 0.002 (0.01)–0.2 μg/mL. A procedure for the determination of quinolones in waste and natural waters is proposed. The relative standard deviation of the analysis results does not exceed 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mashkovskii, M.D., Lekarstvennye sredstva: posobie dlya vrachei (Medicines: A Guide for Doctors), Moscow: Meditsina, 2010.

  2. Gonzalez, J.A.O., Mochon, M.C., and de la Rosa, F.J.B., Talanta, 2000, vol. 52, p. 1149.

    Article  CAS  Google Scholar 

  3. Ocana, J.A., Barragan, F.J., and Callejon, M., Talanta, 2004, vol. 63, p. 691.

    Article  CAS  Google Scholar 

  4. Ocana, J.A., Barragan, F.J., and Callejon, M., J. Pharm. Biomed. Anal., 2005, vol. 37, p. 327.

    Article  CAS  Google Scholar 

  5. Guo, C., Dong, P., Chu, Z., Wang, L., and Jiang, W., Luminescence, 2008, vol. 23, p. 7.

    Article  Google Scholar 

  6. Shtykov, S.N., Smirnova, T.D., Bylinkin, Y.G., Kalashnikova, N.V., and Zhemerichkin, D.A., J. Anal. Chem., 2007, vol. 62, no. 2, p. 136.

    Article  CAS  Google Scholar 

  7. Beltyukova, S., Teslyuk, O., Egorova, A., and Tselik, E., J. Fluoresc., 2002, vol. 12, no. 2, p. 269.

    Article  CAS  Google Scholar 

  8. Egorova, A., Beltyukova, S., and Teslyuk, O., J. Pharm. Biomed. Anal., 1999, vol. 21, p. 585.

    Article  CAS  Google Scholar 

  9. Rodriguez-Diaz, R.C., Aguilar-Caballos, M.P., and Gomez-Hens, A., Anal. Chim. Acta, 2003, vol. 494, p. 55.

    Article  CAS  Google Scholar 

  10. Zhu, X., Gong, A., and Yu, S., Spectrochim. Acta, Part A, 2008, vol. 69, p. 478.

    Article  Google Scholar 

  11. Smirnova, T.D., Danilina, T.G., Rusanova, T.Yu., and Simbireva, N.A., J. Anal. Chem., 2021, vol. 76, no. 1, p. 89.

    Article  CAS  Google Scholar 

  12. Ngumba, E., Kosunen, P., Gachanja, A., and Tuhkanen, T., Anal. Methods, 2016, vol. 8, p. 6720.

    Article  CAS  Google Scholar 

  13. Deng, J., Yu, T., Yao, Y., Qi, PengQ., Luo, L., Chen, B., Wang, X., Yang, Y., and Luan, T., Anal. Chim. Acta, 2017, vol. 954, p. 52.

    Article  CAS  Google Scholar 

  14. Yu, R., Chen, L., Shen, R., Li, P., and Shi, N., Environ. Technol. Innovation, 2020, vol. 19, 100919.

    Article  Google Scholar 

  15. Monogarova, O.V., Oskolok, K.V., and Apyari, V.V., J. Anal. Chem., 2018, vol. 73, no. 11, p. 1076.

    Article  CAS  Google Scholar 

  16. Apyari, V.V., Gorbunova, M.V., Isachenko, A.I., Dmitrienko, S.G., and Zolotov, Yu.A., J. Anal. Chem., 2017, vol. 72, no. 11, p. 1127.

    Article  CAS  Google Scholar 

  17. Ivanov, V.M. and Kuznetsova, O.V., Russ. Chem. Rev., 2001, vol. 70, no. 5, p. 357.

    Article  CAS  Google Scholar 

  18. Huang, X., Xu, D., Chen, J., Liu, J., Li, Y., Song, J., Ma, X., and Guo, J., Analyst, 2018, vol. 143, p. 5339.

    Article  CAS  Google Scholar 

  19. Rezazadeh, M., Seidi, Sh., Lid, M., Pedersen-Bjergaard, S., and Yamini, Y., TrAC, Trends Anal. Chem., 2019, vol. 118, p. 548.

    Article  CAS  Google Scholar 

  20. Ferrer, C., Lozano, A., Aguera, A., Giron, A.J., and Fernandez, A.R., J. Chromatogr. A, 2011, vol. 1218, p. 7634.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Vladimir State University and the Federal Center for Animal Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Amelin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

No supplementary materials are provided.

Additional information

Translated by L. Mukhortova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amelin, V.G., Shogah, Z.A. & Bolshakov, D.S. Sorption-Fluorimetric Determination of Quinolones in Waste and Natural Waters with a Smartphone. Moscow Univ. Chem. Bull. 76, 262–268 (2021). https://doi.org/10.3103/S0027131421040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131421040027

Keywords:

Navigation