Log in

A Smartphone-Based Sensing for Portable and Sensitive Visual Detection of Hg (II) via Nitrogen Doped Carbon Quantum Dots Modified Paper Strip

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The development of portable and cost-effective sensing system for Hg2+ quantitation is highly demanded for environmental monitoring. Herein, an on-site, rapid and portable smartphone readout device based Hg2+ sensing system integrating nitrogen-doped carbon quantum dots (NCDs) modified paper strip was proposed, and the physicochemical properties of NCDs were characterized by high resolution TEM, FTIR, UV–vis absorption spectrum and fluorescence spectral analysis. The modified paper strip was prepared via “ink-jet” printing technology and exhibits sensitive fluorescence response to Hg2+ with fluorescence color of bright blue (at the excitation/emission wavelength of 365/440 nm). This portable smartphone-based sensing platform is highly selective and sensitive to Hg2+ with the limit of detection (LOD) of 10.6 nM and the concentration range of 0–130 nM. In addition, the recoveries of tap water and local lake water were in the range of 89.4% to 109%. The cost-effective sensing system based on smartphone shows a great potential for trace amounts of Hg2+ monitoring in environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

This declaration is “not applicable”.

References

  1. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J Environ Chem Eng 5:2782–2799

    Article  CAS  Google Scholar 

  2. Dai D, Li Z, Yang J, Wang C, Wu JR, Wang Y, Zhang D, Yang YW (2019) Supramolecular assembly-induced emission enhancement for efficient mercury(II) detection and removal. J Am Chem Soc 141:4756–4763

    Article  CAS  PubMed  Google Scholar 

  3. Mozaffarian D, Shi P, Morris JS, Spiegelman D, Grandjean P, Siscovick DS, Willett WC, Rimm EB (2011) Mercury exposure and risk of cardiovascular disease in two U.S. cohorts. N Engl J Med 364:1116–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen CG, Vijay N, Thirumalaivasan N, Velmathi S, Wu SP (2019) Coumarin-based Hg2+ fluorescent probe: Fluorescence turn-on detection for Hg2+ bioimaging in living cells and zebrafish. Spectrochim Acta Part A Mol Biomol Spectrosc 219:135–140

    Article  CAS  Google Scholar 

  5. Liu Y, Deng Y, Li T, Chen Z, Chen H, Li S, Liu H (2018) Aptamer-based electrochemical biosensor for mercury ions detection using AuNPs-modified glass carbon electrode. J Biomed Nanotechnol 14:2156–2161

    Article  CAS  PubMed  Google Scholar 

  6. Chen D, Lu L, Zhang H, Lu B, Feng J, Zeng D (2021) Sensitive mercury speciation analysis in water by high-performance liquid chromatography–atomic fluorescence spectrometry coupling with solid-phase extraction. Anal Sci 37:1235–1240

    Article  CAS  PubMed  Google Scholar 

  7. Chockala B, Krishnan S, Aruliah R, Kadarkarai M, Benelli G, Kannaiyan D (2017) Organic-inorganic hybrid fluorescent sensor thin films of rhodamine B embedded Ag-SBA15 for selective recognition of Hg (II) ions in water. Chin Chem Lett 28:1399–1405

    Article  Google Scholar 

  8. Lu Z, Chen M, Liu T, Wu C, Sun M, Su G, Wang X, Wang Y, Yin H, Zhou X, Ye J, Shen Y, Rao H (2023) Machine learning system to monitor Hg2+ and sulfide using a polychromatic fluorescence-colorimetric paper sensor. ACS Appl Mater Interfaces 15:9800–9812

    Article  CAS  Google Scholar 

  9. Zou C, Liu Z, Wang X, Liu H, Yang M, Huo D, Hou C (2022) A paper-based visualization chip based on nitrogen-doped carbon quantum dots nanoprobe for Hg(II) detection. Spectrochim Acta Part A Mol Biomol Spectrosc 265:120346

    Article  CAS  Google Scholar 

  10. Joseph A, Mathai G, Schwandt C, Ramamurthy PC, Subramanian S (2023) A fluorescence probe for “turn-off” heavy-metal-ion sensing – synthesis and characterization of a dipyrromethene p-phenylenevinylene conjugated copolymer and its electronic and optical properties. ChemistrySelect 8:e202204032

    Article  CAS  Google Scholar 

  11. He Y, Wang Y, Mao G, Liang C, Fan M (2022) Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions. Anal Chim Acta 1191:339251

    Article  CAS  PubMed  Google Scholar 

  12. Zhang H, Zhang B, Di C, Ali MC, Chen J, Li Z, Si J, Zhang H, Qiu H (2018) Label-free fluorescence imaging of cytochrome c in living systems and anti-cancer drug screening with nitrogen doped carbon quantum dots. Nanoscale 10:5342–5349

    Article  CAS  PubMed  Google Scholar 

  13. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  PubMed  Google Scholar 

  14. Wang R, Lu KQ, Tang ZR, Xu YJ (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A 5:3717–3734

    Article  CAS  Google Scholar 

  15. Bandi R, Dadigala R, Gangapuram BR, Guttena V (2018) Green synthesis of highly fluorescent nitrogen – Doped carbon dots from Lantana camara berries for effective detection of lead(II) and bioimaging. J Photochem Photobiol B 178:330–338

    Article  CAS  PubMed  Google Scholar 

  16. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381

    Article  CAS  Google Scholar 

  17. Li L, Dong T (2018) Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom do**. J Mater Chem C 6:7944–7970

    Article  CAS  Google Scholar 

  18. Raut J, Islam MM, Saha S, Mandal SM, Mandal S, Sahoo P (2022) N-doped carbon quantum dots for differential detection of doxycycline in pharmaceutical sewage and in bacterial cell. ACS Sustain Chem Eng 10:9811–9819

    Article  CAS  Google Scholar 

  19. **ao M, Liu Z, Xu N, Jiang L, Yang M, Yi C (2020) A smartphone-based sensing system for on-site quantitation of multiple heavy metal ions using fluorescent carbon nanodots-based microarrays. ACS Sensors 5:870–878

    Article  PubMed  Google Scholar 

  20. Zhao W, Tian S, Huang L, Liu K, Dong L, Guo J (2020) A smartphone-based biomedical sensory system. Analyst 145:2873–2891

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Xu F, Chen J, Tao C, Li Y, Chen Q, Tang S, Lee HK, Shen W (2023) Artificial intelligence-assisted smartphone-based sensing for bioanalytical applications: A review. Biosens Bioelectron 229:115233

    Article  CAS  PubMed  Google Scholar 

  22. Gao ZH, Lin ZZ, Chen X, Zhong HP, Huang ZJ (2016) A fluorescent probe based on N-doped carbon dots for highly sensitive detection of Hg in aqueous solutions. Anal Methods 8:2297–2304

    Article  CAS  Google Scholar 

  23. Naksen P, Boonruang S, Yuenyong N, Lee HL, Ramachandran P, Anutrasakda W, Amatatongchai M, Pencharee S, Jarujamrus PJ (2022) Sensitive detection of trace level Cd (II) triggered by chelation enhanced fluorescence (CHEF)“turn on”: Nitrogen-doped graphene quantum dots (N-GQDs) as fluorometric paper-based sensor. Talanta 242:123305

    Article  CAS  PubMed  Google Scholar 

  24. Wu X, Zhao B, Zhang J, Xu H, Xu K, Chen G (2019) Photoluminescence and photodetecting properties of the hydrothermally synthesized nitrogen-doped carbon quantum dots. J Phys Chem C 123:25570–25578

    Article  CAS  Google Scholar 

  25. Zou C, Liu Z, Wang X, Liu H, Yang M, Huo D, Hou CJ, Spectroscopy B (2022) A paper-based visualization chip based on nitrogen-doped carbon quantum dots nanoprobe for Hg (II) detection. Spectrochim Acta Part A Mol Biomol Spectrosc 265:120346

    Article  CAS  Google Scholar 

  26. Tadesse A, Hagos M, RamaDevi D, Basavaiah K, Belachew N (2020) Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: green synthesis, mercury(II) ion sensing, and live cell imaging. ACS Omega 5:3889–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang H, Yang L, Chu S, Liu B, Zhang Q, Zou L, Yu S, Jiang C (2019) Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device. Anal Chem 91:9292–9299

    Article  CAS  PubMed  Google Scholar 

  28. Liu B, Tao J, Pan J, Li C, Li F, Zheng Y (2021) Construction of green fluorescent carbon dots with high quantum yield for cancer cell recognition and Fe3+ detection. Opt Mater 113:110892

    Article  CAS  Google Scholar 

  29. Barman S, Sadhukhan M (2012) Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem 22:21832–21837

    Article  CAS  Google Scholar 

  30. Wang B, Zhuo S, Chen L, Zhang Y (2014) Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions. Spectrochim Acta Part A Mol Biomol Spectrosc 131:384–387

    Article  CAS  Google Scholar 

  31. Anjana RR, Anjali Devi JS, Jayasree M, Aparna RS, Aswathy B, Praveen GL, Lekha GM, Sony G (2017) S, N-doped carbon dots as a fluorescent probe for bilirubin. Microchim Acta 185:11

    Article  CAS  Google Scholar 

  32. Liu X, Gao R, Han L, Kan C, Xu J (2023) A smartphone readout device for portable and sensitive estimation of Hg2+ via coumarin-modified paper. Talanta 252:123849

    Article  CAS  PubMed  Google Scholar 

  33. Lihong Z, Tienan L, Hong D (2012) Evaluation analysis of rural ground water quality as drinking water in Anda city. Agric Eng 2:46–48

    Google Scholar 

  34. Hao Y, Song Y, Li T, Tuo Y, Tian M, Chai F (2023) Controllable synthesis of yellow emissive carbon dots by mild heating process and their utility as fluorescent test paper for detection of mercury(II) ions assistants by smartphone. J Environ Chem Eng 11:109863

    Article  CAS  Google Scholar 

  35. Chang D, Li L, Dong X, Shi H, Wang S, Zhao Z, Lv L, Yang Y, Shi L (2023) Dual photoluminescence emission carbon dots for ratiometric optical dual-mode and smartphone-integrated visual detection of mercury ion. J Environ Chem Eng 11:109425

    Article  CAS  Google Scholar 

  36. Zhou M, Zheng M, Xue S, Chen B, Wang P, An Y (2023) A novel peptide-based fluorescent probe with large Stokes shift for simultaneous detection of zinc (II) and mercury (II): Smartphone, test strips, living cells and real samples applications. J Mol Struct 1294:136409

    Article  CAS  Google Scholar 

  37. Nandhini C, Saravana Kumar P, Shanmugapriya R, Vennila KN, Elango KP (2021) Selective smartphone aided colorimetric detection of Hg(II) in an aqueous solution via metal ion-induced keto-enol tautomerism–Spectroscopic and theoretical studies. J Mol Struct 1246:131134

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the supports of the Young and Middle-aged Research Fund Project of Qinghai Normal University (KJQN2022012, KJQN2021008).

Author information

Authors and Affiliations

Authors

Contributions

Bo Yin and Ming** Zhang wrote the main manuscript text. Bo Yin, Rong** Zhou and Zhonglong Guo carried out the experiment, and **g Sun accomplished tbe synthesis of NCDs. Jihua Zhu, Zhenbin Wang and Cunhua Ma prepared the all figures.

Corresponding authors

Correspondence to Bo Yin or Ming** Zhang.

Ethics declarations

Ethical Approval

This declaration is “not applicable”.

Competing Interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1685 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Zhou, R., Guo, Z. et al. A Smartphone-Based Sensing for Portable and Sensitive Visual Detection of Hg (II) via Nitrogen Doped Carbon Quantum Dots Modified Paper Strip. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03439-1

Keywords

Navigation