Log in

Electrochemical Impedimetric Study of Non-Watson-Crick Base Pairs of DNA

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopy (EIS) was used to detect non-Watson-Crick base pairs of DNA. Thiol-modified DNA as a probe and mercaptohexanol (MCH) were co-immobilized to form a DNA/MCH mixed self-assembled monolayer on a gold electrode surface and then hybridized with complementary DNAs. The DNA layers were measured by the EIS method and interpreted by equivalent circuits. Every terminal base mismatch of the DNA duplex brought about an increase in the charge-transfer resistance (Rct), unlike the case with a fully matched DNA duplex. The value of Rct was highly sensitive to the number of base mismatches for both unpaired and overhang DNA at the terminal. For internal base mismatches, however, no significant increase in Rct was observed. These experimental results proved that the charge transfer of redox molecules to the electrode surface is largely hindered by an end fraying motion due to base unpairing and dangling overhang. EIS was able to detect these steric properties of DNA strands. Furthermore, an electrode modified with G-quadruplex (G4) DNA demonstrated the influences of bulkiness and loop structure on the accessibility of the redox probe to the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Mullikin, S. E. Hunt, C. G. Cole, B. J. Mortimore, C. M. Rice, J. Burton, L. H. Matthews, R. Pavitt, R. W. Plumb, S. K. Sims, R. M. R. Ainscough, J. Attwood, J. M. Bailey, K. Barlow, R. M. M. Bruskiewich, P. N. Butcher, N. P. Carter, Y. Chen, C. M. Clee, P. C. Coggill, J. Davies, R. M. Davies, E. Dawson, M. D. Francis, A. A. Joy, R. G. Lamble, C. F. Langford, J. Macarthy, V. Mall, A. Moreland, E. K. Overton-Larty, M. T. Ross, L. C. Smith, C. A. Steward, J. E. Sulston, E. J. Tinsley, K. J. Turney, D. L. Willey, G. D. Wilson, A. A. McMurray, I. Dunham, J. Rogers, and D. R. Bentley, Nature, 2000, 407, 516.

    Article  CAS  PubMed  Google Scholar 

  2. B. R. Akerman, M. R. Natowicz, M. M. Kaback, M. Loyer, E. Campeau, and R. A. Gravel, Am. J. Hum. Genet., 1997, 60, 1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Calabretta, T. Tedeschi, G. Di Cola, R. Corradini, S. Sforza, and R. Marchelli, Mol. Biosyst., 2009, 5, 1323.

    Article  CAS  PubMed  Google Scholar 

  4. A. Muñiz, G. Martinez, J. Lavinha, and P. Pacheco, Am. J. Hematol., 2000, 64, 7.

    Article  PubMed  Google Scholar 

  5. S. L. Naylor, Front. Biosci., 2007, 12, 4111.

    Article  CAS  PubMed  Google Scholar 

  6. A.-C. Syvänen, Nat. Rev. Genet., 2001, 2, 930.

    Article  PubMed  Google Scholar 

  7. Y. Huang, Y.-L. Zhang, X. Xu, J.-H. Jiang, G.-L. Shen, and R.-Q. Yu, J. Am. Chem. Soc., 2009, 131, 2478.

    Article  CAS  PubMed  Google Scholar 

  8. I. Cisse, H. Kim, and T. Ha, Nat. Struct. Mol. Biol., 2012, 19, 623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. B. Liu, S. Baudrey, L. Jaeger, and G. C. Bazan, J. Am. Chem. Soc., 2004, 126, 4076.

    Article  CAS  PubMed  Google Scholar 

  10. J. Grimes, Y. V. Gerasimova, and D. M. Kolpashchikov, Angew. Chem., Int. Ed., 2010, 49, 8950.

    Article  CAS  Google Scholar 

  11. E. Papadopoulou and S. E. J. Bell, Angew. Chem., Int. Ed., 2011, 50, 9058.

    Article  CAS  Google Scholar 

  12. Z. Li, Y. Liu, G. Zhou, Y. Jia, C. Ye, W. Chen, and L. Zhang, J. Electrochem. Soc., 2018, 165, H932.

    Article  CAS  Google Scholar 

  13. Y. **ao, X. Lou, T. Uzawa, K. J. I. Plakos, K. W. Plaxco, and H. T. Soh, J. Am. Chem. Soc., 2009, 131, 15311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Qiu, L. Qiu, H. Zhou, Z. Wu, G. Shen, and R. Yu, New J. Chem., 2014, 38, 4711.

    Article  CAS  Google Scholar 

  15. J. Burmeister, V. Bazilyanska, K. Grothe, B. Koehler, I. Dorn, B. D. Warner, and E. Diessel, Anal. Bioanal. Chem., 2004, 379, 391.

    Article  CAS  PubMed  Google Scholar 

  16. T. G. Drummond, M. G. Hill, and J. K. Barton, Nat. Biotechnol., 2003, 21, 1192.

    Article  CAS  PubMed  Google Scholar 

  17. J. J. Gooding, Electroanalysis, 2002, 14, 1149.

    Article  CAS  Google Scholar 

  18. T. Ito, K. Hosokawa, and M. Maeda, Biosens. Bioelectron., 2007, 22, 1816.

    Article  CAS  PubMed  Google Scholar 

  19. M. Satjapipat, R. Sanedrin, and F. Zhou, Langmuir, 2001, 17, 7637.

    Article  CAS  Google Scholar 

  20. C. Z. Li, Y. T. Long, H. B. Kraatz, and J. S. Lee, J. Phys. Chem. B, 2003, 107, 2291.

    Article  CAS  Google Scholar 

  21. R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, J. Am. Chem. Soc., 1998, 120, 9787.

    Article  CAS  Google Scholar 

  22. Z. Li, T. Niu, Z. Zhang, R. Chen, G. Feng, and S. Bi, Biosens. Bioelectron., 2011, 26, 4564.

    Article  CAS  PubMed  Google Scholar 

  23. Z. Li, L. Zhang, H. Mo, Y. Peng, H. Zhang, Z. Xu, C. Zheng, and Z. Lu, Analyst, 2014, 139, 3137.

    Article  CAS  PubMed  Google Scholar 

  24. S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, and S. Neidle, Nucleic Acids Res., 2006, 34, 5402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. Rhodes and H. J. Lipps, “Survey and Summary G-quadruplexes and Their Regulatory Roles in Biology”, 2015, Oxford University Press.

    Google Scholar 

  26. R. Hänsel-Hertsch, M. Di Antonio, and S. Balasubramanian, Nat. Rev. Mol. Cell Biol., 2017, 18, 279.

    Article  PubMed  Google Scholar 

  27. E. B. Bahadir and M. K. Sezgintürk, Artif. Cells. Nanomed. Biotechnol., 2016, 44, 248.

    Article  CAS  PubMed  Google Scholar 

  28. E. Katz and I. Willner, Electroanalysis, 2003, 15, 913.

    Article  CAS  Google Scholar 

  29. L. Y. Zhou, X. Y. Zhang, G. L. Wang, X. X. Jiao, H. Q. Luo, and N. B. Li, Analyst, 2012, 137, 5071.

    Article  CAS  PubMed  Google Scholar 

  30. G. S. Manning, Annu. Rev. Phys. Chem., 1972, 23, 117.

    Article  CAS  Google Scholar 

  31. J. L. Leroy, M. Kochoyan, T. Huynhdinh, and M. Guéron, J. Mol. Biol., 1988, 200, 223.

    Article  CAS  PubMed  Google Scholar 

  32. S. Nonin, J. L. Leroy, and M. Guéron, Biochemistry, 1995, 34, 10652.

    Article  CAS  PubMed  Google Scholar 

  33. M. H. Shamsi and H.-B. Kraatz, Analyst, 2011, 136, 3107.

    Article  CAS  PubMed  Google Scholar 

  34. A. B. Steel, R. L. Levicky, T. M. Herne, and M. J. Tarlov, Biophys. J., 2000, 79, 975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. B. Steel, T. M. Herne, and M. J. Tarlov, Anal. Chem., 1998, 70, 4670.

    Article  CAS  PubMed  Google Scholar 

  36. K. Sato, K. Hosokawa, and M. Maeda, Analyst, 2019, 144, 5580.

    Article  CAS  PubMed  Google Scholar 

  37. S. Chuaychob, P. Kanatharana, P. Thavarungkul, C. Buranachai, M. Fujita, and M. Maeda, Anal. Methods, 2020, 12, 230.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Fujita.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wannapob, R., Chuaychob, S., Fujita, M. et al. Electrochemical Impedimetric Study of Non-Watson-Crick Base Pairs of DNA. ANAL. SCI. 37, 765–771 (2021). https://doi.org/10.2116/analsci.20SCP21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20SCP21

Keywords

Navigation