Log in

Effect of temperature on the fresh and hardened state properties of alkali-activated slag/fly ash mixtures

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The effect of ambient temperature on the engineering properties of alkali-activated materials (AAM) needs to be further investigated due to the high variety of activating solutions in the AAM technology. This paper presents the rheological behavior, structural build-up, reaction kinetics and mechanical properties of GGBFS-FA mixtures activated by sodium hydroxide, sodium silicate, sodium carbonate and sodium sulfateinvestigated under different ambient temperature conditions. It was found that the effect of ambient temperature on the rheology and reaction kinetics was highly dependent on the activator type. Under room temperature conditions, the highest and lowest yield stress values were obtained in sodium hydroxide and sodium silicate mixtures, respectively. The increase in temperature did not affect the yield stresses and viscosities of sodium carbonate and sodium sulfate mixtures; however, the yield stresses of sodium hydroxide and sodium silicate mixtures significantly increased. This effect was more pronounced in mixtures with high Ms values. Higher storage modulus values were obtained with an increase in temperature, indicating initial structuration with temperature. The increasing temperature enhanced the compressive strength of alkali-activated GGBFS-FA mixtures. This improvement was more pronounced at early ages for the sodium silicate mixture, and at later ages for the sodium carbonate and sodium sulfate mixtures, while it was very limited in the sodium hydroxide mixture. The SEM images and calorimetric measurements showed the formation of a denser microstructure and enhancement in the exothermic peak with a shorter induction period with an increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Provis JL (2014) Geopolymers and other alkali activated materials: why how and what. Mater Struct. https://doi.org/10.1617/s11527-013-0211-5

    Article  Google Scholar 

  2. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  3. Palomo A, Krivenko P, Garcia-Lodeiro I, Kavalerova E, Maltseva O, Fernández-Jiménez A (2014) A review on alkaline activation: new analytical perspectives. Materiales de Construccion. https://doi.org/10.3989/mc.2014.00314

    Article  Google Scholar 

  4. Provis JL, van Deventer JSJ (Eds) (2014) Alkali-Activated materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer/RILEM, Dordrecht, 11. https://doi.org/10.1007/978-94-007-7672-2.

  5. van Deventer JSJ, Nicolas RS, Ismail I, Bernal SA, Brice DG, Provis JL (2014) Microstructure and durability of alkali-activated materials as key parameters for standardization. J Sustain Cem Based Mater 4(2):116–128. https://doi.org/10.1080/21650373.2014.979265

    Article  Google Scholar 

  6. Behfarnia K, Rostami M (2017) An assessment on parameters affecting the carbonation of alkali-activated slag concrete. J Clean Prod 157:1–9. https://doi.org/10.1016/j.jclepro.2017.04.097

    Article  Google Scholar 

  7. Yang KH, Song JK, Song K (2013) Assessment of CO 2 reduction of alkali-activated concrete. J Clean Prod 39:265–272. https://doi.org/10.1016/j.jclepro.2012.08.001

    Article  Google Scholar 

  8. Yang KH, Song JK, Song K (2013) Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod 39:265–272. https://doi.org/10.1016/j.jclepro.2012.08.001

    Article  Google Scholar 

  9. Higgins D (2007) Briefing: GGBS and sustainability. Proc Inst Civ Eng Constr Mater 160(3):99–101. https://doi.org/10.1680/coma.2007.160.3.99

    Article  Google Scholar 

  10. Shi C, Qu B, Provis JL (2019) Recent progress in low-carbon binders. Cem Concr Res 122(May):227–250. https://doi.org/10.1016/j.cemconres.2019.05.009

    Article  Google Scholar 

  11. Kashani A (2022) Influence of precursors on rheology of alkali-activated materials. LTD. https://doi.org/10.1016/b978-0-323-85469-6.00004-0

    Article  Google Scholar 

  12. Dai X, Aydın S, Yardımcı MY, Lesage K, De Schutter G (2020) Effects of activator properties and GGBFS/FA ratio on the structural build-up and rheology of AAC. Cem Concr Res 138:106253. https://doi.org/10.1016/j.cemconres.2020.106253

    Article  Google Scholar 

  13. Dai X, Aydin S, Yardimci MY, De Schutter G (2022) Rheology and structural build-up of sodium silicate- and sodium hydroxide-activated GGBFS mixtures. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2022.104570

    Article  Google Scholar 

  14. Dai X, Tao Y, Van Tittelboom K, De Schutter G (2023) Rheological and mechanical properties of 3D printable alkali-activated slag mixtures with addition of nano clay. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2023.104995

    Article  Google Scholar 

  15. Palacios M, Banfill PFG, Puertas F (2008) Rheology and setting of alkali-activated slag pastes and mortars: effect of organic admixture. ACI Mater J 105(2):140–148. https://doi.org/10.14359/19754

    Article  Google Scholar 

  16. Puertas F, Varga C, Alonso MM (2014) Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem Concr Compos 53:279–288. https://doi.org/10.1016/j.cemconcomp.2014.07.012

    Article  Google Scholar 

  17. Poulesquen A, Frizon F, Lambertin D (2013) Rheological behavior of alkali-activated metakaolin during geopolymerization. Cem Mater Nucl Waste Storage 357(21):225–238. https://doi.org/10.1007/978-1-4614-3445-0_20

    Article  Google Scholar 

  18. Rifaai Y, Yahia A, Mostafa A, Aggoun S, Kadri EH (2019) Rheology of fly ash-based geopolymer: Effect of NaOH concentration. Constr Build Mater 223:583–594. https://doi.org/10.1016/j.conbuildmat.2019.07.028

    Article  Google Scholar 

  19. Zhao Y, Ma Z, Qiu J, Sun X, Gu X (2021) Temperature-dependent hydration and mechanical properties of high-volume fly ash cement with chemical additives. J Mater Civ Eng 33(5):04021065. https://doi.org/10.1061/(asce)mt.1943-5533.0003684

    Article  Google Scholar 

  20. Rivera OG et al (2016) Effect of elevated temperature on alkali-activated geopolymeric binders compared to Portland cement-based binders. Cem Concr Res 90:43–51. https://doi.org/10.1016/j.cemconres.2016.09.013

    Article  Google Scholar 

  21. Fan Y, Yin S, Wen Z, Zhong J (1999) Activation of fly ash and its effects on cement properties. Cem Concr Res 29(4):467–472. https://doi.org/10.1016/S0008-8846(98)00178-1

    Article  Google Scholar 

  22. Puertas F, Martínez-Ramírez S, Alonso S, Vázquez T (2000) Alkali-activated fly ash/slag cements. Strength behaviour and hydration products. Cem Concr Res 30(10):1625–1632. https://doi.org/10.1016/S0008-8846(00)00298-2

    Article  Google Scholar 

  23. Mehdizadeh H, Kani EN (2018) Rheology and apparent activation energy of alkali activated phosphorous slag. Constr Build Mater 171:197–204. https://doi.org/10.1016/j.conbuildmat.2018.03.130

    Article  Google Scholar 

  24. Palacios M, Alonso MM, Varga C, Puertas F (2019) Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes. Cem Concr Compos 95:277–284. https://doi.org/10.1016/j.cemconcomp.2018.08.010

    Article  Google Scholar 

  25. Lu C, Zhang Z, Hu J, Yu Q, Shi C (2022) Relationship between rheological property and early age-microstructure building up of alkali-activated slag. Compos B Eng 247:110271. https://doi.org/10.1016/j.compositesb.2022.110271

    Article  Google Scholar 

  26. Chithiraputhiran S, Neithalath N (2013) Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr Build Mater 45:233–242. https://doi.org/10.1016/j.conbuildmat.2013.03.061

    Article  Google Scholar 

  27. Yahia A, Khayat KH (2001) Analytical models for estimating yield stress of high-performance pseudoplastic grout. Cem Concr Res 31(5):731–738

    Article  Google Scholar 

  28. Feys D, Wallevik JE, Yahia A, Khayat KH, Wallevik OH (2013) Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Mater Struct. https://doi.org/10.1617/s11527-012-9902-6

    Article  Google Scholar 

  29. Yuan Q, Zhou D, Khayat KH, Feys D, Shi C (2017) On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test. Cem Concr Res 99:183–189. https://doi.org/10.1016/j.cemconres.2017.05.014

    Article  Google Scholar 

  30. European committee for standardization, (2019) EN 1015–11:Methods of test for mortar for masonry-part 11: Determination of flexural and compressive strength of hardened mortar

  31. Snellings R, Chwast J, Cizer Ö, De Belie N, Dhandapani Y, Durdzinski P, Elsen J et al (2019) R TC-238“RILEM TC - 238 SCM Recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages.” Mater Struct. https://doi.org/10.1617/s11527-018-1298-5

    Article  Google Scholar 

  32. Favier A, Hot J, Habert G, Roussel N, D’Espinose De Lacaillerie JB (2014) Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes. Soft Matter 10(8):1134–1141. https://doi.org/10.1039/c3sm51889b

    Article  Google Scholar 

  33. Alnahhal MF, Kim T, Hajimohammadi A (2021) Distinctive rheological and temporal viscoelastic behaviour of alkali-activated fly ash/slag pastes: a comparative study with cement paste. Cem Concr Res 144:106441. https://doi.org/10.1016/j.cemconres.2021.106441

    Article  Google Scholar 

  34. Vance K, Dakhane A, Sant G, Neithalath N (2014) Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration. Rheol Acta 53(10–11):843–855. https://doi.org/10.1007/s00397-014-0793-z

    Article  Google Scholar 

  35. Roussel N, Lemaître A, Flatt RJ, Coussot P (2010) Steady state flow of cement suspensions: a micromechanical state of the art. Cem Concr Res 40(1):77–84. https://doi.org/10.1016/j.cemconres.2009.08.026

    Article  Google Scholar 

  36. Kashani A, Provis JL, Qiao GG, Van Deventer JSJ (2014) The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr Build Mater 65:583–591. https://doi.org/10.1016/j.conbuildmat.2014.04.127

    Article  Google Scholar 

  37. Gebregziabiher BS, Thomas R, Peethamparan S (2015) Very early-age reaction kinetics and microstructural development in alkali-activated slag. Cem Concr Compos 55:91–102. https://doi.org/10.1016/j.cemconcomp.2014.09.001

    Article  Google Scholar 

  38. Yang X, Zhu W, Yang Q (2008) The viscosity properties of sodium silicate solutions. J Solut Chem 37(1):73–83. https://doi.org/10.1007/s10953-007-9214-6

    Article  Google Scholar 

  39. Vázquez G, Alvarez E, Varela R, Cancela A, Navaza JM (1996) Density and viscosity of aqueous solutions of sodium dithionite, sodium hydroxide, sodium dithionite + sucrose, and sodium dithionite + sodium hydroxide + sucrose from 25°C to 40°C. J Chem Eng Data 41(2):244–248. https://doi.org/10.1021/je950243k

    Article  Google Scholar 

  40. Roussel N, Ovarlez G, Garraul S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res 42:148–157. https://doi.org/10.1016/j.cemconres.2011.09.004

    Article  Google Scholar 

  41. Flatt RJ, Bowen P (2003) Electrostatic repulsion between particles in cement suspensions: domain of validity of linearized Poisson-Boltzmann equation for nonideal electrolytes. Cem Concr Res 33(6):781–791. https://doi.org/10.1016/S0008-8846(02)01059-1

    Article  Google Scholar 

  42. Onisei S, Lesage K, Blanpain B, Pontikes Y (2015) Early age microstructural transformations of an inorganic polymer made of fayalite slag. J Am Ceram Soc 98(7):2269–2277. https://doi.org/10.1111/jace.13548

    Article  Google Scholar 

  43. Dai X, Aydin S, Yardımcı MY, Qiang R, Lesage K, De Schutter G (2021) Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cem Concr Compos 124:104244. https://doi.org/10.1016/j.cemconcomp.2021.104244

    Article  Google Scholar 

  44. Dai X, Aydın S, Yardımcı MY, Lesage K, De Schutter G (2022) Rheology and microstructure of alkali-activated slag cements produced with silica fume activator. Cem Concr Compos 125:104303. https://doi.org/10.1016/j.cemconcomp.2021.104303

    Article  Google Scholar 

  45. Aupoil J, Champenois JB, de d’Espinose Lacaillerie JB, Poulesquen A (2018) Interplay between silicate and hydroxide ions during geopolymerization. Cem Concr Res 115:426–432. https://doi.org/10.1016/j.cemconres.2018.09.012

    Article  Google Scholar 

  46. Dai X, Ren Q, Aydin S, Yardımcı MY, Lesage K, De Schutter G (2021) Enhancing thixotropy and structural build-up of alkali- activated slag/fly ash pastes with nano clay. Mater Struct. https://doi.org/10.1617/s11527-021-01760-4

    Article  Google Scholar 

  47. Rouyer J, Poulesquen A (2015) Evidence of a fractal percolating network during geopolymerization. Am Ceram Soc. https://doi.org/10.1111/jace.13480

    Article  Google Scholar 

  48. Steins P, Poulesquen A, Diat O, Frizon F (2012) Structural evolution during geopolymerization from an early age to consolidated material. Langmuir 28(22):8502–8510. https://doi.org/10.1021/la300868v

    Article  Google Scholar 

  49. Siddique S, Gupta V, Chaudhary S, Park S, Jang JG (2021) Influence of the precursor, molarity and temperature on the rheology and structural buildup of alkali-activated materials. Materials. https://doi.org/10.3390/ma14133590

    Article  Google Scholar 

  50. ThomaTs JJ (2012) The instantaneous apparent activation energy of cement hydration measured using a novel calorimetry-based method. J Am Ceram Soc 95(10):3291–3296. https://doi.org/10.1111/j.1551-2916.2012.05396.x

    Article  Google Scholar 

  51. Gao X, Yu QL, Brouwers HJH (2015) Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends. Constr Build Mater 80:105–115. https://doi.org/10.1016/j.conbuildmat.2015.01.065

    Article  Google Scholar 

  52. Dai X, Aydin S, Yardımcı MY, Lesage K, De Schutter G (2020) Influence of water to binder ratio on the rheology and structural Build-up of Alkali-Activated Slag/Fly ash mixtures. Constr Build Mater 264:120253. https://doi.org/10.1016/j.conbuildmat.2020.120253

    Article  Google Scholar 

  53. Sun Z, Vollpracht A (2018) Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cem Concr Res 103:110–122. https://doi.org/10.1016/j.cemconres.2017.10.004

    Article  Google Scholar 

  54. Gebregziabiher BS, Thomas RJ, Peethamparan S (2016) Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr Build Mater 113:783–793. https://doi.org/10.1016/j.conbuildmat.2016.03.098

    Article  Google Scholar 

  55. AlMakhadmeh W, Soliman A (2020) Effect of activator nature on property development of alkali-activated slag binders. J Sustain Cem Based Mater 10(4):240–256

    Article  Google Scholar 

  56. Gao X, Yu QL, Brouwers HJH (2015) Properties of alkali activated slag-fly ash blends with limestone addition. Cem Concr Compos 59:119–128. https://doi.org/10.1016/j.cemconcomp.2015.01.007

    Article  Google Scholar 

  57. Shi C, Day RL (1995) A calorimetric study of early hydration of alkali-slag cements. Cem Concr Res 25(6):1333–1346

    Article  Google Scholar 

  58. Brough AR, Atkinson A (2002) Sodium silicate-based, alkali-activated slag mortars-part I. Strength, hydration and microstructure. Cem Concr Res 32(6):865–879. https://doi.org/10.1016/S0008-8846(02)00717-2

    Article  Google Scholar 

  59. Puertas F, Fernández-Jiménez A, Blanco-Varela MT (2004) Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem Concr Res 34(1):139–148. https://doi.org/10.1016/S0008-8846(03)00254-0

    Article  Google Scholar 

  60. Aydin S, Baradan B (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos B Eng 57:166–172. https://doi.org/10.1016/j.compositesb.2013.10.001

    Article  Google Scholar 

  61. Puertas F, Fernández-Jiménez A (2003) Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem Concr Compos 25(3):287–292. https://doi.org/10.1016/S0958-9465(02)00059-8

    Article  Google Scholar 

  62. Yang T, Yao X, Zhang Z, Wang H (2012) Mechanical property and structure of alkali-activated fly ash and slag blends. J Sustain Cem Based Mater 1(4):167–178. https://doi.org/10.1080/21650373.2012.752621

    Article  Google Scholar 

  63. Aydin S, Baradan B (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 35:374–383. https://doi.org/10.1016/j.matdes.2011.10.005

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a scientific output of the research actions performed in the framework of the FWO-EOS project 30439691 ‘INTERdisciplinary multiscale Assessment of a new generation of Concrete with alkali-activated maTerials’ (INTERACT). The financial support by FWO-EOS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

XD: Methodology, Conceptualization, Investigation, Writing—original draft; SA: Methodology, Conceptualization, Writing—review editing; MYY: Methodology, Validation, Writing – review editing; YS: Methodology, Writing—review editing; GDS: Funding acquisition, Supervision, Writing—review & editing.

Corresponding author

Correspondence to **aodi Dai.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Aydin, S., Yardimci, M.Y. et al. Effect of temperature on the fresh and hardened state properties of alkali-activated slag/fly ash mixtures. Mater Struct 56, 107 (2023). https://doi.org/10.1617/s11527-023-02194-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02194-w

Keywords

Navigation