Log in

Sustainable energy potentials of textile-based triboelectric generators through simulation of real usage conditions

  • Original research
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Over the last years, the use of eco-friendly and human skin-friendly regular textile materials has been of high interest in building textile-based triboelectric generators (TEGs). However, although the triboelectricity phenomenon can be commonly experienced when simply removing a cloth, most of the research applies considerable force loads between the triboelectric surfaces, a condition that is not met on garments. In this study, the primary objective was to compare the triboelectric potentials of six selected textile samples of identical knitting patterns, but different materials under a number of repeated cycles of contact, sliding, and separation, as they would behave if they were parts of a TEG on a garment under real usage conditions. All the sample combinations provided firmly different voltage outputs following exponential increases until they reached different plateaus of saturation. This work wishes to help toward the use of ordinary, eco-friendly, and human skin-friendly textile materials as options for wearable TEGs on garments.

Graphical abstract

Highlights

This study investigates the triboelectric potentials of regular textiles in wearable energy generators, comparing different materials under real-world conditions to explore their effectiveness in generating voltage through natural movements.

Discussion

  • Why develop a versatile triboelectric generator prototype that imitates garment usage in real-life scenarios such as by a walking person? What distinct advantages does this approach offer?

  • What motion should be executed by a triboelectric generator device to imitate the natural movements on the garment of a walking human? How does this mechanism introduce friction into the prevalent vertical contact separation mode of triboelectric generators?

  • How can we compare the triboelectric outcomes across various samples of textile materials as if they were used under real conditions?

  • What are the potentials of using regular knitted fabrics in wearable triboelectric generators?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. M.W. Williams, Am. Sci. 100, 316 (2012)

    Article  Google Scholar 

  2. P.E. Shaw, C.S. Jex, W.B. Hardy, Proc. R. Soc. Lond. Ser. A 118, 108 (1928)

    Article  CAS  Google Scholar 

  3. M. Farghali, A.I. Osman, I.M.A. Mohamed, Z. Chen, L. Chen, I. Ihara, P.-S. Yap, D.W. Rooney, Environ. Chem. Lett. (2023)

  4. Y. Popkostova, Europe’s Energy Crisis Conundrum: Origins, Impacts and Way Forward (Publications Office of the European Union, Luxembourg, 2022)

    Google Scholar 

  5. Y. Peng, Z. Wang, Y. Shao, J. Xu, X. Wang, J. Hu, K.-Q. Zhang, Polymers 15, 508 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. B. Chen, Z.L. Wang, Small 2107034 (2022)

  7. Z.L. Wang, J. Chen, L. Lin, Energy Environ. Sci. 8, 2250 (2015)

    Article  CAS  Google Scholar 

  8. F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Nano Energy 1, 328 (2012)

    Article  CAS  Google Scholar 

  9. G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Nano Lett. 12, 4960 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. W. Liu, Z. Wang, C. Hu, Mater. Today 45, 93 (2021)

    Article  Google Scholar 

  11. G. Hu, C. Zhao, Y. Yang, X. Li, J. Liang, Appl. Energy 306, 118037 (2022)

    Article  Google Scholar 

  12. R. **a, R. Zhang, Y. Jie, W. Zhao, X. Cao, Z. Wang, Nano Energy 92, 106685 (2022)

    Article  CAS  Google Scholar 

  13. W. Li, L. Lu, A.G.P. Kottapalli, Y. Pei, Nano Energy 95, 107018 (2022)

    Article  CAS  Google Scholar 

  14. Y. Wang, X. Liu, Y. Wang, H. Wang, H. Wang, S.L. Zhang, T. Zhao, M. Xu, Z.L. Wang, ACS Nano 15, 15700 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. Z.L. Wang, Rep. Prog. Phys. 84, 096502 (2021)

    Article  CAS  Google Scholar 

  16. C. Hu, F. Wang, X. Cui, Y. Zhu, Adv Compos Hybrid Mater 6, 70 (2023)

    Article  Google Scholar 

  17. R. Walden, I. Aazem, A. Babu, S.C. Pillai, Chem. Eng. J. 451, 138741 (2023)

    Article  CAS  Google Scholar 

  18. V.U. Somkuwar, B. Kumar, A.C.S. Appl, Polym. Mater. 5, 2323 (2023)

    CAS  Google Scholar 

  19. M. Li, B. Xu, Z. Li, Y. Gao, Y. Yang, X. Huang, Chem. Eng. J. 450, 137491 (2022)

    Article  CAS  Google Scholar 

  20. X. Guan, J. Gong, B. Xu, ACS Appl. Mater. Interfaces. 12, 17967 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. S. Dong, F. Xu, Y. Sheng, Z. Guo, X. Pu, Y. Liu, Nano Energy 78, 105327 (2020)

    Article  CAS  Google Scholar 

  22. L. Chen, T. Wang, Y. Shen, F. Wang, C. Chen, Nanomaterials 13, 863 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. T. Kang, W. Ma, Y. Guo, J. Zhou, Y. Zhang, T. Ji, W. Zhang, W. Gong, Nano Energy 110, 108359 (2023)

    Article  CAS  Google Scholar 

  24. M. Lou, I. Abdalla, M. Zhu, X. Wei, J. Yu, Z. Li, B. Ding, ACS Appl. Mater. Interfaces. 12, 19965 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. Z. Zhao, C. Yan, Z. Liu, X. Fu, L.-M. Peng, Y. Hu, Z. Zheng, Adv. Mater. 28, 10267 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. X. Liu, X. Du, L. Li, Y. Cao, Y. Yang, W. Wang, J. Wang, Composites Part A 156, 106883 (2022)

    Article  CAS  Google Scholar 

  27. B. Yang, Y. **ong, K. Ma, S. Liu, X. Tao, EcoMat 2, e12054 (2020)

    Article  Google Scholar 

  28. H. Chen, Q. Lu, X. Cao, N. Wang, Z. Wang, Nano Res. (2021)

  29. E. He, Y. Sun, X. Wang, H. Chen, B. Sun, B. Gu, W. Zhang, Compos. B Eng. 200, 108244 (2020)

    Article  CAS  Google Scholar 

  30. Y. Tang, H. Zhou, X. Sun, T. Feng, X. Zhao, Z. Wang, E. Liang, Y. Mao, J. Mater. Sci. 55, 2462 (2020)

    Article  CAS  Google Scholar 

  31. M. Salauddin, J.Y. Park, J. Phys: Conf. Ser. 773, 012004 (2016)

    Google Scholar 

  32. Z. Nannan, C. Tao, X. Fan, J. Chen, J. Mater. Res. 32, 1628 (2017)

    Article  Google Scholar 

  33. C. Ng, M. Reaz, Sensors 17, 574 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Z. Li, M. Zhu, Q. Qiu, J. Yu, B. Ding, Nano Energy 53, 726 (2018)

    Article  CAS  Google Scholar 

  35. V.-T. Bui, J.-H. Oh, J.-N. Kim, Q. Zhou, D.P. Huynh, I.-K. Oh, Nano Energy 71, 104561 (2020)

    Article  CAS  Google Scholar 

  36. A. Sharma, P. Agarwal, J. Vib. Control 107754632110564 (2021)

  37. H.J. Oh, J.H. Bae, Y.K. Park, J. Song, D.K. Kim, W. Lee, M. Kim, K.J. Heo, Y. Kim, S.H. Kim, B.J. Yeang, S.J. Lim, Polymers 12, 1044 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y. Zou, J. Xu, K. Chen, J. Chen, Adv. Mater. Technol. 6, 2000916 (2021)

    Article  CAS  Google Scholar 

  39. C.-C. Chang, J.-F. Shih, Y.-C. Chiou, R.-T. Lee, S.-F. Tseng, C.-R. Yang, Int. J. Adv. Manuf. Technol. 104, 2633 (2019)

    Article  Google Scholar 

  40. T.A. Arica, G. Topcu, A. Pala, M.M. Demir, Measurement 152, 107316 (2020)

    Article  Google Scholar 

  41. J. Zhu, X. Wang, Y. **ng, J. Li, Nanoscale Res. Lett. 14, 1–9 (2019)

    Article  Google Scholar 

  42. W. Kim, S. Pyo, M.-O. Kim, Y. Oh, D.-S. Kwon, J. Kim, Nanotechnology 30, 275401 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. J.H. Bae, H.J. Oh, J. Song, D.K. Kim, B.J. Yeang, J.H. Ko, S.H. Kim, W. Lee, S.J. Lim, Polymers 12, 658 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Zhang, Y. Lu, A. Ghaffarinejad, P. Basset, Nano Energy 51, 10 (2018)

    Article  Google Scholar 

  45. Z. Feng, S. Yang, S. Jia, Y. Zhang, S. Jiang, L. Yu, R. Li, G. Song, A. Wang, T. Martin, L. Zuo, X. Jia, Nano Energy 74, 104805 (2020)

    Article  CAS  Google Scholar 

  46. K.-H. Kim, K.-S. Yun, in 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (IEEE, Los Angeles, CA, USA, 2017), pp. 25–28

  47. B.K. Deka, A. Hazarika, S. Lee, D.Y. Kim, Y.-B. Park, H.W. Park, Nano Energy 73, 104754 (2020)

    Article  CAS  Google Scholar 

  48. X. Feng, Q. Li, K. Wang, ACS Appl. Mater. Interfaces. 13, 400 (2021)

    Article  CAS  PubMed  Google Scholar 

  49. M.O. Shaikh, Y.-B. Huang, C.-C. Wang, C.-H. Chuang, Micromachines 10, 438 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  50. Z. Zhang, J. Cai, Curr. Appl. Phys. 22, 1 (2021)

    Article  Google Scholar 

  51. J. Luo, Z.L. Wang, EcoMat 2, e12059 (2020)

    Article  CAS  Google Scholar 

  52. A. Repoulias, S.F. Galata, A. Kallivretaki, A. Marmarali, S. Vassiliadis, in (Online Conference, 2021)

  53. A. Repoulias, M. Ertekin, S.F. Galata, S. Vassiliadis, A. Marmarali, Tekstil ve Mühendis 29, 291 (2022)

    Article  Google Scholar 

  54. A. Repoulias, S. Vassiliadis, S.F. Galata, J. Textile Inst. 112, 1580 (2021)

    Article  CAS  Google Scholar 

  55. F.F. Hatta, M.A.S. Mohammad Haniff, M.A. Mohamed, Int. J. Energy Res. 46, 544 (2022)

    Article  CAS  Google Scholar 

  56. S. Liu, W. Zheng, B. Yang, X. Tao, Nano Energy 53, 383 (2018)

    Article  CAS  Google Scholar 

  57. A. Repoulias, M. Ertekin, S.F. Galata, J. Pesez, C. Anicaux, S. Vassiliadis, A. Marmarali, Energy Technol. 11, 202201433 (2023)

    Article  Google Scholar 

  58. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, C. Xu, Z.L. Wang, Nat. Commun. 10, 1427 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dimitrios Apostolou (Industrial Designer) for his valuable support.

Funding

This research was funded by the University of West Attica (ELKE, Special Account for Research Grants, 80993/71311).

Author information

Authors and Affiliations

Authors

Contributions

Aristeidis Repoulias contributed to Conceptualization, Investigation, Methodology, Software, Data curation, Writing—original draft, Visualization, and Formal analysis. Mustafa Ertekin contributed to Conceptualization, Investigation, and Resources. Sotiria F Galata contributed to Validation and Writing—review & editing. Savvas Vassiliadis contributed to Project administration, Supervision, Validation, Writing—review & editing, and Conceptualization. Arzu Marmarali contributed to Supervision, Resources, and Writing—review & editing.

Corresponding author

Correspondence to Aristeidis Repoulias.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repoulias, A., Ertekin, M., Galata, S.F. et al. Sustainable energy potentials of textile-based triboelectric generators through simulation of real usage conditions. MRS Energy & Sustainability (2024). https://doi.org/10.1557/s43581-024-00095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43581-024-00095-1

Keywords

Navigation