Log in

Development of textile-based triboelectric nanogenerators integrated with plastic metal electrodes for wearable devices

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study aimed to develop wearable devices of textile-based triboelectric nanogenerators (TENGs) integrated with plastic metal electrodes. The plastic metal electrodes were developed using Ga-In liquid alloy with glaze powders as the contact electrodes of the textile-based TENGs. Moreover, nylon and polyester textiles with different microstructures/nanostructures were selected as frictional electrodes in TENGs to achieve high flexibility, stability, and electric conductivity. The experimental results indicated that the maximum output voltage and current of the textile-based TENGs were 30.96 V and 3.07 μA, respectively, when the TENG comprised a nylon layer with embroidered square array patterns and a polyester layer with polyvinylidene fluoride nanofibers. Furthermore, these TENGs could generate a maximum output power of 13.97 μW when the external load resistance was 10 MΩ. After a continuous 7200 cycle operation with a reciprocating linear motion platform having a pneumatic cylinder, the textile-based TENG exhibited excellent stability and durability. The fabricated TENGs integrated in a commercial coat, shoe, kneecap, and wristband achieved biomechanical energy conversion functions with high electrical performance for practical applications of self-powered devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  2. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  Google Scholar 

  3. Wang X (2012) Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1:13–24

    Article  Google Scholar 

  4. Fan FR, Tian ZQ, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1:328–334

    Article  Google Scholar 

  5. Gal CW, Han JS, Park JM, Kim JH, Park SJ (2019) Fabrication of micro piezoelectric rod array using metallic mold system for mass production. Int J Adv Manuf Technol 101:2815–2823

    Article  Google Scholar 

  6. Zhang QS, Chen XB, Yang Q, Zhang WJ (2012) Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces. Int J Adv Manuf Technol 61:1029–1034

    Article  Google Scholar 

  7. Saha CR, O’Donnell T, Wang N, McCloskey P (2008) Electromagnetic generator for harvesting energy from human motion. Sensors Actuators A Phys 147:248–253

    Article  Google Scholar 

  8. Dresselhaus MS, Chen G, Tang MY, Yang R, Lee H, Wang D, Ren Z, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053

    Article  Google Scholar 

  9. Cuadrasa A, Gasulla M, Ferrari V (2010) Thermal energy harvesting through pyroelectricity. Sensors Actuators A Phys 158:132–139

    Article  Google Scholar 

  10. Jeon YP, Park JH, Kim TW (2018) Highly-enhanced triboelectric nanogenerators based on zinc-oxide nanoripples acting as a triboelectric layer. Appl Surf Sci 445:50–55

    Article  Google Scholar 

  11. Jeon YP, Park JH, Kim TW (2019) Highly flexible triboelectric nanogenerators fabricated utilizing active layers with a ZnO nanostructure on polyethylene naphthalate substrates. Appl Surf Sci 466:210–214

    Article  Google Scholar 

  12. Taghavi M, Sadeghi A, Mazzolai B, Beccai L, Mattoli V (2014) Triboelectric-based harvesting of gas flow energy and powerless sensing applications. Appl Surf Sci 323:82–87

    Article  Google Scholar 

  13. Cheng GG, Jiang SY, Li K, Zhang ZQ, Wang Y, Yuan NY, Ding JN, Zhang W (2017) Effect of argon plasma treatment on the output performance of triboelectric nanogenerator. Appl Surf Sci 412:350–356

    Article  Google Scholar 

  14. Chen J, Zhu G, Yang J, **g Q, Bai P, Yang W, Qi X, Su Y, Wang ZL (2015) Personalized keystroke dynamics for self-powered human-machine interfacing. ACS Nano 9:105–116

    Article  Google Scholar 

  15. Yang J, Chen J, Su Y, **g Q, Li Z, Yi F, Wen X, Wang Z, Wang ZL (2015) Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv Mater 27:1316–1326

    Article  Google Scholar 

  16. Seung W, Gupta MK, Lee KY, Shin KS, Lee JH, Kim TY, Kim S, Lin J, Kim JH, Kim SW (2015) Textile-based wearable triboelectric nanogenerator. ACS Nano 9:3501–3509

    Article  Google Scholar 

  17. Zhang Z, He J, Wen T, Zhai C, Han J, Mu J, Jia W, Zhang B, Zhang W, Chou X, Xue C (2017) Magnetically levitated-triboelectric nanogenerator as a self-powered vibration monitoring sensor. Nano Energy 33:88–97

    Article  Google Scholar 

  18. Kim I, Jeon H, Kim D, You J, Kim D (2018) All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 53:975–981

    Article  Google Scholar 

  19. Zhang Z, Du K, Chen X, Xue C, Wang K (2018) An air-cushion triboelectric nanogenerator integrated with stretchable electrode for human-motion energy harvesting and monitoring. Nano Energy 53:108–115

    Article  Google Scholar 

  20. Shi L, Dong S, Ding P, Chen J, Liu S, Huang S, Xu H, Farooq U, Zhang S, Li S, Luo J (2019) Carbon electrodes enable flat surface PDMS and PA6 triboelectric nanogenerators to achieve significantly enhanced triboelectric performance. Nano Energy 55:548–557

    Article  Google Scholar 

  21. Li Z, Zhu M, Qiu Q, Yu J, Ding B (2018) Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53:726–733

    Article  Google Scholar 

  22. Yang W, Wang X, Li H, Wu J, Hu Y, Li Z, Liu H (2019) Fundamental research on the effective contact area of micro-/nano-textured surface in triboelectric nanogenerator. Nano Energy 57:41–47

    Article  Google Scholar 

  23. He T, Shi Q, Wang H, Wen F, Chen T, Ouyang J, Lee C (2019) Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile. Nano Energy 57:338–352

    Article  Google Scholar 

  24. Zhu G, Bai P, Chen J, Wang ZL (2013) Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2:688–692

    Article  Google Scholar 

  25. Sun J, Li W, Liu G, Li W, Chen M (2015) Triboelectric nanogenerator based on biocompatible polymer materials. J Phys Chem C 119:9061–9068

    Article  Google Scholar 

  26. Iftekhar ASM, Chung GS (2016) Fabrication and characterization of self-powered active hydrogen sensor based on triboelectric nanogenerator. Procedia Eng 168:239–242

    Article  Google Scholar 

  27. Zhu G, Lin ZH, **g Q, Bai P, Pan C, Yang Y, Zhou Y, Wang ZL (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13:847–853

    Article  Google Scholar 

  28. Yang Y, Zhang H, Chen J, Lee S, Hou TC, Wang ZL (2013) Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ Sci 6:1744–1749

    Article  Google Scholar 

  29. Dhakar L, Pitchappa P, Tay FEH, Lee C (2016) An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy 19:532–540

    Article  Google Scholar 

  30. Yang SY, Shih JF, Chang CC, Yang CR (2017) Development of high-flexible triboelectric generators using plastic metal as electrodes. Appl Phys A Mater Sci Process 123:128

    Article  Google Scholar 

  31. Shih JF, Yang SY, Chang CC, Yang CR (2018) Wearable sensors developed using a novel plastic metal material. Appl Phys A Mater Sci Process 124:799

    Article  Google Scholar 

  32. Hou TC, Yang Y, Zhang H, Chen J, Chen LJ, Wang ZL (2013) Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2:856–862

    Article  Google Scholar 

  33. Ko YH, Lee SH, Leem JW, Yu JS (2014) High transparency and triboelectric charge generation properties of nano-patterned PDMS. RSC Adv 4:10216–10220

    Article  Google Scholar 

  34. Chen J, Guo H, Ding P, Pan R, Wang W, Xuan W, Wang X, ** H, Dong S, Luo J (2016) Transparent triboelectric generators based on glass and polydimethylsiloxane. Nano Energy 30:235–241

    Article  Google Scholar 

  35. Zhang X, Qu N, Li H, Xu Z (2015) Investigation of machining accuracy of micro-dimples fabricated by modified microscale pattern transfer without photolithography of substrates. Int J Adv Manuf Technol 81:1475–1485

    Article  Google Scholar 

  36. Hassanin H, Qstadi H, Jiang K (2013) Surface roughness and geometrical characterization of ultra-thick micro moulds for ceramic micro fabrication using soft lithography. Int J Adv Manuf Technol 67:2293–2300

    Article  Google Scholar 

  37. Leksakul K, Limcharoen A (2014) Central composite designs coupled with simulation techniques for optimizing RIE process. Int J Adv Manuf Technol 70:1219–1225

    Article  Google Scholar 

  38. Zhang XS, Han MD, Wang RX, Meng B, Zhu FY, Sun XM, Hu W, Wang W, Li ZH, Zhang HX (2014) High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4:123–131

    Article  Google Scholar 

  39. Shang W, Gu GQ, Yang F, Zhao L, Cheng G, Du ZL, Wang ZL (2017) A sliding-mode triboelectric nanogenerator with chemical group grated structure by shadow mask reactive ion etching. ACS Nano 11:8796–8803

    Article  Google Scholar 

  40. Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao Z (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9:859–864

    Article  Google Scholar 

  41. Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrost 62:277–290

    Article  Google Scholar 

  42. Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J Mater Chem 21:11088–11091

    Article  Google Scholar 

  43. Zhu G, Pan C, Guo W, Chen CY, Zhou Y, Yu R, Wang ZL (2012) Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett 12:4960–4965

    Article  Google Scholar 

  44. Zhong J, Zhong Q, Fan F, Zhang Y, Wang S, Hu B, Wang ZL, Zhou J (2013) Finger ty** driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy 2:491–497

    Article  Google Scholar 

Download references

Funding

We thank the Ministry of Science and Technology of Taiwan for financially supporting this research under the projects MOST 107-2221-E-027-129-MY2 and MOST 107-2622-E-027-019-CC3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shih-Feng Tseng or Chii-Rong Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CC., Shih, JF., Chiou, YC. et al. Development of textile-based triboelectric nanogenerators integrated with plastic metal electrodes for wearable devices. Int J Adv Manuf Technol 104, 2633–2644 (2019). https://doi.org/10.1007/s00170-019-04160-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04160-9

Keywords

Navigation