Log in

Dielectric constants and double-layer formation in a perovskite thin film revealed by electrochemical impedance spectroscopy

  • Organic and Perovskite Materials and Devices Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Hybrid perovskites have attracted great interest in solar energy conversion and optoelectronic applications. The interconnected ionic and electronic effects complicate assessing the underlying electrical processes while contributing greatly to the efficiency and stability of devices. Fortunately, these coupled processes manifest on distinct timescales that enable frequency-specific electrochemical analysis. However, hybrid perovskites dissolve in most of the common aqueous and organic solvents utilized for electrochemistry. Here, we utilize a hydrofluoroether (HFE) solvent toolkit to perform nondestructive electrochemical impedance spectroscopy of methylammonium lead iodide (MAPbI3) perovskite thin films. This enables the extraction of dielectric constants and double-layer formation in these perovskite films.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H.A. Dewi, N. Mathews, P.P. Boix, H.V. Demir, S. Mhaisalkar, Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 6, 4360 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. C.S. Ponseca, T.J. Savenije, M. Abdellah, K.B. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, V. Sundstrom, Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho, H.J. Yun, D.-H. Kim, J. Park, S.-C. Lee, S.-H. Park, E. Yoon, N.C. Greenham, T.-W. Lee, Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Ma, K. Lin, Y. Dong, H. Choubisa, A.H. Proppe, D. Wu, Y.-K. Wang, B. Chen, P. Li, J.Z. Fan, F. Yuan, A. Johnston, Y. Liu, Y. Kang, Z.-H. Lu, Z. Wei, E.H. Sargent, Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun, C.C.S. Chan, S. Ding, K. Wang, R. Chen, K.S. Wong, X. Lu, W.-J. Yin, W.C.H. Choy, High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater. 33, 2005570 (2021)

    Article  CAS  Google Scholar 

  9. Z. Chen, C. Zhang, X.-F. Jiang, M. Liu, R. **a, T. Shi, D. Chen, Q. Xue, Y.-J. Zhao, S. Su, H.-L. Yip, Y. Cao, High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. 29, 1603157 (2017)

    Article  Google Scholar 

  10. N. Vicente, G. Garcia-Belmonte, Methylammonium lead bromide perovskite battery anodes reversibly host high Li-ion concentrations. J. Phys. Chem. Lett. 8, 1371 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. N. Tewari, D. Lam, C.H.A. Li, J.E. Halpert, Recent advancements in batteries and photo-batteries using metal halide perovskites. APL Mater. 10, 040905 (2022)

    Article  CAS  Google Scholar 

  12. M.B. Hanif, S. Rauf, M. Motola, Z.U.D. Babar, C.-J. Li, C.-X. Li, Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications. Mater. Res. Bull. 146, 111612 (2022)

    Article  CAS  Google Scholar 

  13. Q.L. Jiang, M.M. Chen, J.Q. Li, M.C. Wang, X.Q. Zeng, T. Besara, J. Lu, Y. ** of halide perovskites with ion intercalation. ACS Nano 11, 1073 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Q. Jiang, X. Zeng, N. Wang, Z. ** induced property changes in halide perovskite CsPbBr 3 crystal. ACS Energy Lett. 3, 264 (2018)

    Article  CAS  Google Scholar 

  15. J.A. Dawson, A.J. Naylor, C. Eames, M. Roberts, W. Zhang, H.J. Snaith, P.G. Bruce, M.S. Islam, Mechanisms of lithium intercalation and conversion processes in organic-inorganic halide perovskites. ACS Energy Lett. 2, 1818 (2017)

    Article  CAS  Google Scholar 

  16. J.T. Mulder, I. du Fosse, M.A. Jazi, L. Manna, A.J. Houtepen, Electrochemical p-do** of CsPbBr 3 perovskite nanocrystals. ACS Energy Lett. 6, 2519 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Hasan, S. Venkatesan, D. Lyashenko, J.D. Slinker, A. Zakhidov, Solvent toolkit for electrochemical characterization of hybrid perovskite films. Anal. Chem. 89, 9649 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. G.F. Samu, R.A. Scheidt, P.V. Kamat, C. Janáky, Electrochemistry and spectroelectrochemistry of lead halide perovskite films: Materials science aspects and boundary conditions. Chem. Mater. 30, 561 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. S. Jha, M. Hasan, N. Khakurel, C.A. Ryan, R. McMullen, A. Mishra, A.V. Malko, A.A. Zakhidov, J.D. Slinker, Electrochemical characterization of halide perovskites: Stability & do**. Mater. Today Adv. 13, 100213 (2022)

    Article  CAS  Google Scholar 

  20. D. Moia, I. Gelmetti, P. Calado, W. Fisher, M. Stringer, O. Game, Y. Hu, P. Docampo, D. Lidzey, E. Palomares, J. Nelson, P.R.F. Barnes, Ionic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices. Energy Environ. Sci. 12, 1296 (2019)

    Article  CAS  Google Scholar 

  21. A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chem. Rev. 121, 14430 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. E. Ghahremanirad, O. Almora, S. Suresh, A.A. Drew, T.H. Chowdhury, A.R. Uhl, Beyond protocols: Understanding the electrical behavior of perovskite solar cells by impedance spectroscopy. Adv. Energy Mater. 13, 2204370 (2023)

    Article  CAS  Google Scholar 

  23. M.A. Rivas, T.P. Iglesias, On permittivity and density of the systems triglyme+(dimethyl or diethyl carbonate) and formulation of Δε in terms of volume or mole fraction. J. Chem. Thermodyn. 40, 1120 (2008)

    Article  CAS  Google Scholar 

  24. H. Lee, S. Hwang, M. Kim, K. Kwak, J. Lee, Y.-K. Han, H. Lee, Why does dimethyl carbonate dissociate li salt better than other linear carbonates? Critical role of polar conformers. J. Phys. Chem. Lett. 11, 10382 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. S. Govinda, B.P. Kore, M. Bokdam, P. Mahale, A. Kumar, S. Pal, B. Bhattacharyya, J. Lahnsteiner, G. Kresse, C. Franchini, A. Pandey, D.D. Sarma, Behavior of methylammonium dipoles in MAPbX(3) (X = Br and I). J. Phys. Chem. Lett. 8, 4113 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Sajedi Alvar, P.W.M. Blom, G.-J.A.H. Wetzelaer, Device model for methylammonium lead iodide perovskite with experimentally validated ion dynamics. Adv. Electron. Mater. 6, 1900935 (2020)

    Article  CAS  Google Scholar 

  27. E.J. Juarez-Perez, R.S. Sanchez, L. Badia, G. Garcia-Belmonte, Y.S. Kang, I. Mora-Sero, J. Bisquert, Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. M.N.F. Hoque, M. Yang, Z. Li, N. Islam, X. Pan, K. Zhu, Z. Fan, Polarization and dielectric study of methylammonium lead iodide thin film to reveal its nonferroelectric nature under solar cell operating conditions. ACS Energy Lett. 1, 142 (2016)

    Article  CAS  Google Scholar 

  29. A.A. Zakhidov, J.K. Lee, H.H. Fong, J.A. DeFranco, M. Chatzichristidi, P.G. Taylor, C.K. Ober, G.G. Malliaras, Hydrofluoroethers as orthogonal solvents for the chemical processing of organic electronic materials. Adv. Mater. 20, 3481 (2008)

    Article  CAS  Google Scholar 

  30. A.A. Zakhidov, S. Reineke, B. Lüssem, K. Leo, Hydrofluoroethers as heat-transfer fluids for OLEDs: Operational range, stability, and efficiency improvement. Org. Electron. 13, 356 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is dedicated to Alex Zakhidov, who co-pioneered the application of orthogonal liquids to the processing of organic materials in electronic devices, particularly for organic photovoltaics, transistors, and LEDs.[29,30] He applied HFE solvents in electrochemical do** and study of perovskites devices.[17,19] He inspired this work, and it is with a great sense of loss that we carry this research forward in his absence. We would also like to thank Muhammad Khalid and Akbar Ali for their help with supporting measurements.

Funding

J.D.S. acknowledges the support from the National Science Foundation Electrical, Communications and Cyber Systems (ECCS 1906505). A.Z. acknowledges support from the Welch Foundation (AT-1617) and the Russian Science Foundation (19-73-30023).

Author information

Authors and Affiliations

Authors

Contributions

SJ, RH, and JS contributed to conceptualization ; SJ and RH contributed to data curation; SJ, RH, AZ, and JS contributed to formal analysis ;AZ and JS contributed to funding acquisition; SJ, RH, AZ, and JS contributed to investigation; JS contributed to project administration; AZ and JS contributed to supervision; SJ contributed to validation; JS contributed to writing—original draft; SJ, RH, AZ, and JS contributed to writing—review and editing.

Corresponding author

Correspondence to Jason D. Slinker.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jason D. Slinker and Anvar A. Zakhidov were editors of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 408 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, S., Haroldson, R., Zakhidov, A.A. et al. Dielectric constants and double-layer formation in a perovskite thin film revealed by electrochemical impedance spectroscopy. MRS Communications 14, 196–200 (2024). https://doi.org/10.1557/s43579-023-00495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00495-3

Keywords

Navigation