Log in

Current status and future research imperatives of self-healing metal matrix composites

  • MRS Fellows Focus
  • MRS Fellows Focus
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Self-healing Metal Matrix Composites (SHMMCs) have emerged as an important field of research in materials engineering. This paper critically examines the current state of the art of SHMMCs, including matrix alloys, reinforcements, crack orientation, and stress states under which self-healing has been studied. The significance of characteristics of SMA reinforcement, including size, length, distribution, and interface strength, is presented. Challenges in synthesizing SHMMCs, including achieving wetting, bonding, and load transfer between the metal matrix and the reinforcement, overcoming the problem due to oxidation, and irregularities of cracked surfaces, are discussed. Needs of future research directions are outlined, including examining thermodynamics and kinetics of self-healing, design of microstructure based on mechanics for targeted self-healing, and develo** capabilities of autonomous and capacity for multicycle healing in metals, especially in high temperatures metals and alloys. The need for develo** self-healing and shape-changing capabilities in man-made materials similar to biological living materials is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data availability

Not applicable.

References

  1. M. Nosonovsky, P.K. Rohatgi, Biomimetics in materials science: self-healing, self-lubricating, and self-cleaning materials (Springer, New York, 2012)

    Book  Google Scholar 

  2. M. Bellah, M. Nosonovsky, P. Rohatgi, Recent advances in self-healing metal matrix composites, in Metal-matrix composites. ed. by T.S. Srivatsan, P.K. Rohatgi, S. Hunyadi Murph (Springer, Cham, 2022), pp.297–310

    Chapter  Google Scholar 

  3. M. Bellah, M. Nosonovsky, P. Rohatgi, Shape memory alloy reinforced self-healing metal matrix composites. Appl. Sci. 13(12), 6884 (2023)

    Article  CAS  Google Scholar 

  4. Y. Wang, D. Jiang, L. Zhang, B. Li, C. Sun, H. Yan, Z. Wu, H. Liu, J. Zhang, J. Fan, H. Hou, T. Ding, Z. Guo, Hydrogen bonding derived self-healing polymer composites reinforced with amidation carbon fibers. Nanotechnology 31(2), 025704 (2019)

    Article  PubMed  Google Scholar 

  5. B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, S.R. White, Self-healing polymers and composites. Annu. Rev. Mater. Res. 40(1), 179–211 (2010)

    Article  CAS  Google Scholar 

  6. S. Wang, M.W. Urban, Self-healing polymers. Nat. Rev. Mater. 5(8), 562–583 (2020)

    Article  CAS  Google Scholar 

  7. C.-H. Li, J.-L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32(27), 1903762 (2020)

    Article  CAS  Google Scholar 

  8. L. Zhai, A. Narkar, K. Ahn, Self-healing polymers with nanomaterials and nanostructures. Nano Today 30, 100826 (2020)

    Article  CAS  Google Scholar 

  9. M. Goyal, S.N. Agarwal, N. Bhatnagar, A review on self-healing polymers for applications in spacecraft and construction of roads. J. Appl. Polym. Sci. 139(37), e52816 (2022)

    Article  CAS  Google Scholar 

  10. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. V.K. Thakur, M.R. Kessler, Self-healing polymer nanocomposite materials: a review. Polymer 69, 369–383 (2015)

    Article  CAS  Google Scholar 

  12. R.S. Trask, H.R. Williams, I.P. Bond, Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim. 2(1), P1 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. I.L. Hia, V. Vahedi, P. Pasbakhsh, Self-healing polymer composites: prospects, challenges, and applications. Polym. Rev. 56(2), 225–261 (2016)

    Article  CAS  Google Scholar 

  14. M. Amran, A.M. Onaizi, R. Fediuk, N.I. Vatin, R.S. Muhammad Rashid, H. Abdelgader, T. Ozbakkaloglu, Self-healing concrete as a prospective construction material: a review. Materials 15(9), 3214 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C. Xue, W. Li, J. Li, V.W.Y. Tam, G. Ye, A review study on encapsulation-based self-healing for cementitious materials. Struct. Concr. 20(1), 198–212 (2019)

    Article  Google Scholar 

  16. G. Perrot, G. Couégnat, M. Ricchiuto, G.L. Vignoles, Image-based numerical modeling of self-healing in a ceramic-matrix minicomposite. Ceramics 2(2), 308–326 (2019)

    Article  CAS  Google Scholar 

  17. P. Greil, Self-healing engineering ceramics with oxidation-induced crack repair. Adv. Eng. Mater. 22(9), 1901121 (2020)

    Article  CAS  Google Scholar 

  18. B. Wang, R. Tu, Y. Wei, H. Cai, Self-healing of SiC–Al2O3–B4C ceramic composites at low temperatures. Materials 15(2), 652 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. I. Justo-Reinoso, A. Heath, S. Gebhard, K. Paine, Aerobic non-ureolytic bacteria-based self-healing cementitious composites: a comprehensive review. J. Build. Eng. 42, 102834 (2021)

    Article  Google Scholar 

  20. K.W. Shah, G.F. Huseien, Biomimetic self-healing cementitious construction materials for smart buildings. Biomimetics 5(4), 47 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  21. C. Fernandez, M. Correa, M.-T. Nguyen, K. Rod, G. Dai, L. Cosimbescu, R. Rousseau, V.-A. Glezakou, Progress and challenges in self-healing cementitious materials. J. Mater. Sci. 56, 1–30 (2021)

    Article  Google Scholar 

  22. V.C. Li, Y.M. Lim, Y.-W. Chan, Feasibility study of a passive smart self-healing cementitious composite. Compos. Part B Eng. 29(6), 819–827 (1998)

    Article  Google Scholar 

  23. X.F. Wang, Z.H. Yang, C. Fang, N.X. Han, G.M. Zhu, J.N. Tang, F. **ng, Evaluation of the mechanical performance recovery of self-healing cementitious materials—its methods and future development: a review. Constr. Build. Mater. 212, 400–421 (2019)

    Article  CAS  Google Scholar 

  24. J.B. Ferguson, B.F. Schultz, P.K. Rohatgi, Self-healing metals and metal matrix composites. JOM 66(6), 866–871 (2014)

    Article  CAS  Google Scholar 

  25. V. Kilicli, X. Yan, N. Salowitz, P.K. Rohatgi, Recent advancements in self-healing metallic materials and self-healing metal matrix composites. JOM 70(6), 846–854 (2018)

    Article  CAS  Google Scholar 

  26. M. Arseenko, J. Gheysen, F. Hannard, N. Nothomb, A. Simar, Self-healing in metal-based systems, in Self-healing construction materials: fundamentals, monitoring and large scale applications. ed. by A. Kanellopoulos, J. Norambuena-Contreras (Springer, Cham, 2022), pp.43–78

    Chapter  Google Scholar 

  27. B. Grabowski, C.C. Tasan, Self-healing metals, in Self-healing materials. ed. by M.D. Hager, S. van der Zwaag, U.S. Schubert (Springer, Cham, 2016), pp.387–407

    Chapter  Google Scholar 

  28. N. van Dijk, S. van der Zwaag, Self-healing phenomena in metals. Adv. Mater. Interfaces 5(17), 1800226 (2018)

    Article  Google Scholar 

  29. J. Martinez-Lucci, R.S. Amano, P. Rohatgi, Review in self healing in metal matrix composites. J. Aeronaut. Astronaut. Aviat. 53(4), 441–472 (2021)

    Google Scholar 

  30. E.N. Brown, N.R. Sottos, S.R. White, Fracture testing of a self-healing polymer composite. Exp. Mech. 42(4), 372–379 (2002)

    Article  CAS  Google Scholar 

  31. A.C. Balazs, Modeling self-healing materials. Mater. Today 10(9), 18–23 (2007)

    Article  CAS  Google Scholar 

  32. A.C. de Oliveira Gonzalez, T.F. Costa, Z. de Araújo Andrade, A.R.A.P. Medrado, Wound healing—a literature review. An. Bras. Dermatol. 91(5), 614–620 (2016)

    Article  Google Scholar 

  33. K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, Self-healing materials with microvascular networks. Nat. Mater. 6(8), 581–585 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. Hastrich, C., “Self healing materials|bouncing ideas” [Online]. Available: https://bouncingideas.wordpress.com/2012/02/01/self-healing-materials/. [Accessed: 13-Nov-2023].

  35. W.A. Muller, Getting leukocytes to the site of inflammation. Vet. Pathol. 50(1), 7–22 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Leick, V. Azcutia, G. Newton, F.W. Luscinskas, Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res. 355(3), 647–656 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. I. Gebeshuber, B. Majlis, H. Stachelberger, Tribology in biology: biomimetic studies across dimensions and across fields. Int. J. Mech. Mater. Eng. IJMME 4, 321–327 (2009)

    Google Scholar 

  38. R. Verberg, A.T. Dale, P. Kumar, A. Alexeev, A.C. Balazs, Healing substrates with mobile, particle-filled microcapsules: designing a ‘repair and go’ system. J. R. Soc. Interface 4(13), 349–357 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. J.Y. Lee, G.A. Buxton, A.C. Balazs, Using nanoparticles to create self-healing composites. J. Chem. Phys. 121(11), 5531–5540 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. S. Tyagi, J.Y. Lee, G.A. Buxton, A.C. Balazs, Using nanocomposite coatings to heal surface defects. Macromolecules 37(24), 9160–9168 (2004)

    Article  CAS  Google Scholar 

  41. K.A. Smith, S. Tyagi, A.C. Balazs, Healing surface defects with nanoparticle-filled polymer coatings: effect of particle geometry. Macromolecules 38(24), 10138–10147 (2005)

    Article  CAS  Google Scholar 

  42. Y. Yang, L. Gao, J. **e, Y. Zhou, J. Hu, Q. Li, J. He, Defect-targeted self-healing of multiscale damage in polymers. Nanoscale 12(6), 3605–3613 (2020)

    Article  CAS  PubMed  Google Scholar 

  43. M.A. Ganjei, E. Aflaki, Application of nano-silica and styrene-butadiene-styrene to improve asphalt mixture self healing. Int. J. Pavement Eng. 20(1), 89–99 (2019)

    Article  CAS  Google Scholar 

  44. P.G. Kumar, Application of nano silica to improve self-healing of bitumen mixtures. Comput. Res. Prog. Appl. Sci. Eng. 6(4), 276–280 (2020)

    Google Scholar 

  45. P.E. Leser, J.A. Newman, S.W. Smith, W.P. Leser, R.A. Wincheski, T.A. Wallace, E.H. Glaessgen, R.S. Piascik, Mitigation of crack damage in metallic materials (Langley Research Center, Hampton, 2014)

    Google Scholar 

  46. X.G. Zheng, Y.-N. Shi, K. Lu, Electro-healing cracks in nickel. Mater. Sci. Eng. A 561, 52–59 (2013)

    Article  CAS  Google Scholar 

  47. A. Ruzek, Synthesis and characterization of metallic systems with potential for self-healing (Univerity of Wisconsin, Milwaukee, 2009)

    Google Scholar 

  48. S. van der Zwaag, An introduction to material design principles: damage prevention versus damage management, in Self healing materials: an alternative approach to 20 centuries of materials science. ed. by S. van der Zwaag (Springer, Dordrecht, 2007), pp.1–18

    Chapter  Google Scholar 

  49. S. van der Zwaag, Routes and mechanisms towards self healing behaviour in engineering materials. Bull. Pol. Acad. Sci. Tech. Sci. 58(2), 227 (2010)

    Google Scholar 

  50. S. van der Zwaag, N.H. van Dijk, H.M. Jonkers, S.D. Mookhoek, W.G. Sloof, Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 367(1894), 1689–1704 (2009)

    Google Scholar 

  51. N. Shinya, J. Kyono, Effect of boron nitride precipitation at cavity surface on rupture properties. Mater. Trans. 47(9), 2302–2307 (2006)

    Article  CAS  Google Scholar 

  52. N. Shinya, J. Kyono, K. Laha, C. Masuda, Self-healing of creep damage through autonomous boron segregation and boron nitride precipitation during high temperature use of austenitic stainless steels, in Proceedings of the first international conference on self-healing materials. ed. by J. Smith (Trans Tech Publications Ltd, Stafa, 2007)

    Google Scholar 

  53. M.V. Manuel, Design of a biomimetic self-healing alloy composite (Northwestern University, Evanston, 2007)

    Google Scholar 

  54. N. Salowitz, S. Misra, M.I. Haider, M. Povolo, P. Rohatgi, Investigation into the performance of NiTi shape memory alloy wire reinforced Sn–Bi self-healing metal matrix composite. Materials 15(9), 2970 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J. Martinez Lucci, R.S. Amano, P. Rohatgi, B. Schultz, Experiment and computational analysis of self-healing in an aluminum alloy. ASME Int. Mech. Eng. Congress Expos. (2008). https://doi.org/10.1115/IMECE2008-68304

    Article  Google Scholar 

  56. J. Martinez Lucci, R.S. Amano, P. Rohatgi, B. Schultz, Self-healing in an aluminum alloy reinforces with microtubes. Energy Nanotechnol. Int. Conf. (2008). https://doi.org/10.1115/ENIC2008-53011

    Article  Google Scholar 

  57. O.P. Oladijo, M.O. Bodunrin, K. Sobiyi, N.B. Maledi, K.K. Alaneme, Investigating the self-healing behaviour of under-aged and 60Sn–40Pb alloy reinforced aluminium hybrid composites. Thin Solid Films 620, 201–205 (2016)

    Article  CAS  Google Scholar 

  58. M.V. Manuel, G.B. Olson, Biomimetic self-healing metals. Proc. Int. Conf. Self-Heal. Mater. 1, 18–20 (2007)

    Google Scholar 

  59. S.K. Misra, Shape memory alloy reinforced self-healing metal matrix composites (The University of Wisconsin, Milwaukee, 2013)

    Google Scholar 

  60. M.C. Wright, M. Manuel, T. Wallace, Fatigue resistance of liquid-assisted selfrepairing aluminum alloys reinforced with shape memory alloys, 2013

  61. C.R. Fisher, H.B. Henderson, M.S. Kesler, P. Zhu, G.E. Bean, M.C. Wright, J.A. Newman, L.C. Brinson, O. Figueroa, M.V. Manuel, Repairing large cracks and reversing fatigue damage in structural metals. Appl. Mater. Today 13, 64–68 (2018)

    Article  Google Scholar 

  62. J.B. Ferguson, B.F. Schultz, P.K. Rohatgi, Zinc alloy ZA-8/shape memory alloy self-healing metal matrix composite. Mater. Sci. Eng. A 620, 85–88 (2015)

    Article  Google Scholar 

  63. M.A. Poormir, S.M.R. Khalili, R. Eslami-Farsani, Investigation of the self-healing behavior of Sn–Bi metal matrix composite reinforced with NiTi shape memory alloy strips under flexural loading. JOM 70(6), 806–810 (2018)

    Article  CAS  Google Scholar 

  64. M.A. Poormir, S.M.R. Khalili, R. Eslami-Farsani, Optimal design of a bio-inspired self-healing metal matrix composite reinforced with NiTi shape memory alloy strips. J. Intell. Mater. Syst. Struct. 29(20), 3972–3982 (2018)

    Article  CAS  Google Scholar 

  65. V. Srivastava, M. Gupta, Experimental assessment of self-healing characteristics in AA2014matrix with nitinol wire and solder alloy as healing agents. Mater. Res. Express 6(8), 085704 (2019)

    Article  CAS  Google Scholar 

  66. V. Srivastava, M. Gupta, Experimental assessment of self-healing nature in aluminum-based smart composites with NiTi wires and solder alloy as healing agents through taguchi approach. J. Intell. Mater. Syst. Struct. 31(18), 2101–2116 (2020)

    Article  CAS  Google Scholar 

  67. V. Srivastava, M. Gupta, Impact of post hardening mechanism on self-healing assessment of AA2014 nitinol-based smart composites. Met. Mater. Int. 27(8), 2666–2681 (2021)

    Article  CAS  Google Scholar 

  68. V. Srivastava, M. Gupta, Parametric assessments of self-healing characteristics in AA2014–NiTi-based metallic composites through destructive and nondestructive evaluation. Russ. J. Nondestruct. Test. 56, 1064–1082 (2020)

    Article  Google Scholar 

  69. V. Srivastava, M. Gupta, Design and prediction of healing assessment for AA2014-nitinol strip-solder alloy based hybrid self-healing composite structure via taguchi analysis and fuzzy logic approach. Mech. Adv. Mater. Struct. 30, 1–20 (2022)

    Google Scholar 

  70. V. Srivastava, M. Gupta, Evaluation and prediction of self-healing assessments for AA2014 based hybrid smart composite structures: a novel fuzzy logic approach. Int. J. Eng. 35(10), 1841–1857 (2022)

    Article  Google Scholar 

  71. S. Sharma, G. Nandan, R. Tyagi, P. Rohtagi, Fabrication, testing, and microstructural analysis of nitinol-based self-healing metal matrix composite of A356 alloy cast by semi-solid metal processing. Adv. Mater. Process Technol. (2023). https://doi.org/10.1080/2374068X.2023.2210932

    Article  Google Scholar 

  72. P. Zhu, Z. Cui, M.S. Kesler, J.A. Newman, M.V. Manuel, M.C. Wright, L.C. Brinson, Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites. Mech. Mater. 103, 1–10 (2016)

    Article  Google Scholar 

  73. P. Zhu, Shape memory alloy modeling and applications to porous and composite structures (Northwestern University, Evanston, 2015)

    Google Scholar 

  74. M.V. Manuel, C.R., Fisher, M.C., Wright, 2020, Self-repairing metal alloy matrix composites, methods of manufacture and use thereof and articles comprising the same

  75. J.A. Monroe, J.S. McAllister, D.S. Content, J. Zgarba, X. Huerta, I. Karaman, Negative thermal expansion ALLVAR alloys for telescopes. Adv. Opt. Mech. Technol. Telesc. Instrument. 10706, 107060 (2018)

    Google Scholar 

  76. T. Hisashige, T. Yamaguchi, T. Tsuji, Y. Yamamura, Phase transition of Zr1xHfxV2O7 solid solutions having negative thermal expansion. J. Ceram. Soc. Jpn. 114(1331), 607 (2006)

    Article  CAS  Google Scholar 

  77. B.K. Greve, K.L. Martin, P.L. Lee, P.J. Chupas, K.W. Chapman, A.P. Wilkinson, Pronounced negative thermal expansion from a simple structure: cubic ScF3. J. Am. Chem. Soc. 132(44), 15496–15498 (2010)

    Article  CAS  PubMed  Google Scholar 

  78. M.P. Attfield, Strong negative thermal expansion in siliceous faujasite. Chem. Commun. 5, 601–602 (1998)

    Article  Google Scholar 

  79. P. Lightfoot, D.A. Woodcock, M.J. Maple, L.A. Villaescusa, P.A. Wright, The widespread occurrence of negative thermal expansion in zeolites basis of a presentation given at materials discussion. J. Mater. Chem. 11(1), 212–216 (2001)

    Article  CAS  Google Scholar 

  80. P. Rohatgi, Self healing metals and alloys—including structural alloys and self-healing solders. 2013, U.S. Patent 8,518,531

  81. P. Rohatgi, Self-healing aluminum alloys incorporating shape metal alloys and reactive particles. 2013, U.S. Patent 9,435,014

  82. P. Rohatgi, Self healing lead, tin, and their alloys, and solders, incorporating shape memory alloys, reactive particles and hollow vascular networks. 2018, U.S. Patent 10,161,026

  83. G.Q. Xu, M.J. Demkowicz, Healing of nanocracks by disclinations. Phys. Rev. Lett. 111(14), 145501 (2013)

    Article  CAS  PubMed  Google Scholar 

  84. C.M. Barr, T. Duong, D.C. Bufford, Z. Milne, A. Molkeri, N.M. Heckman, D.P. Adams, A. Srivastava, K. Hattar, M.J. Demkowicz, B.L. Boyce, Autonomous healing of fatigue cracks via cold welding. Nature 620(7974), 552–556 (2023)

    Article  CAS  PubMed  Google Scholar 

  85. Amano, R., Rohatgi, P., Martínez Lucci, J., Schultz, B., and Ruzek, A., 2009, “Design and Demonstration of Self-Healing Behavior in a Lead-Free Solder Alloy,” 7th International Energy Conversion Engineering Conference, p. 4514.

  86. J. Martínez Lucci, R.S. Amano, P.K. Rohatgi, Heat transfer and fluid flow analysis of self-healing in metallic materials. Heat Mass Transf. 53, 825–848 (2017)

    Article  Google Scholar 

  87. J. Martinez-Lucci, A. Ruzek, S.K. Misra, P.K. Rohatgi, R.S. Amano, Self-healing in metal castings (11-051). AFS Trans.-Am. Foundry Soc. 119, 187 (2011)

    CAS  Google Scholar 

  88. J. Martinez-Lucci, A. Ruzek, S. Misra, P. Rohatgi, R. Amano, Can castings heal themselves? Mod. Cast. 101(7), 24–27 (2011)

    Google Scholar 

  89. J. Martínez Lucci, R.S. Amano, P.K. Rohatgi, Heat transfer and fluid flow analysis of self-healing in metallic materials. Heat Mass Transf. 53(3), 825–848 (2017)

    Article  Google Scholar 

  90. K.K. Alaneme, O.I. Omosule, Experimental studies of self healing behaviour of under-aged Al–Mg–Si alloys and 60Sn–40Pb alloy reinforced aluminium metal-metal composites. J. Miner. Mater. Charact. Eng. 3(1), 1–8 (2014)

    Google Scholar 

  91. J. Kim, H.J. Kim, S.H. Hong, H.J. Park, Y.S. Kim, Y.J. Hwang, Y.B. Jeong, J.-Y. Park, J.M. Park, B. Sarac, W.-M. Wang, J. Eckert, K.B. Kim, Thermally-triggered dual in-situ self-healing metallic materials. Sci. Rep. 8(1), 2120 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  92. K. Mysore, D., Chan, D., Bhate, G., Subbarayan, I., Dutta, V., Gupta, J., Zhao, D., Edwards Aging-informed behavior of Sn3.8Ag0.7Cu solder alloys: 2008 11th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems, I-THERM. 2008 11th IEEE Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. -THERM, 2008, pp. 870–875

  93. I. Dutta, D. Pan, S. Ma, B.S. Majumdar, S. Harris, Role of shape-memory alloy reinforcements on strain evolution in lead-free solder joints. J. Electron. Mater. 35(10), 1902–1913 (2006)

    Article  CAS  Google Scholar 

  94. J.P. Coughlin, J.J. Williams, G.A. Crawford, N. Chawla, Interfacial reactions in model NiTi shape memory alloy fiber-reinforced sn matrix ‘smart’ composites. Metall. Mater. Trans. A 40(1), 176–184 (2009)

    Article  Google Scholar 

  95. J.P. Coughlin, J.J. Williams, N. Chawla, Mechanical behavior of niti shape memory alloy fiber reinforced sn matrix ‘smart’ composites. J. Mater. Sci. 44(3), 700–707 (2009)

    Article  CAS  Google Scholar 

  96. C.R. Fisher Jr., H.B. Henderson, M.S. Kesler, M.V. Manuel, A reactive element approach to improve fracture healing in metallic systems. Front. Mater. 6, 210 (2019)

    Article  Google Scholar 

  97. C.R. Fisher, Design of liquid-assisted self-healing metal-matrix composites (University of Florida, Gainesville, 2013)

    Google Scholar 

  98. L. Ren, X. Xu, Y. Du, K. Kalantar-Zadeh, S.X. Dou, Liquid metals and their hybrids as stimulus-responsive smart materials. Mater. Today 34, 92–114 (2020)

    Article  CAS  Google Scholar 

  99. T. Yu, D. Deng, G. Wang, H. Zhang, Crack healing in SUS304 stainless steel by electropulsing treatment. J. Clean. Prod. 113, 989–994 (2016)

    Article  CAS  Google Scholar 

  100. Q. Shengru, L. Yanli, L. Yun, Z. Chengyu, Damage healing of aluminum alloys by D. C. electropulsing and evaluation by resistance. Rare Met. Mater. Eng. 38(4), 570–573 (2009)

    Article  Google Scholar 

  101. H. Song, Z. Wang, X. He, J. Duan, Self-healing of damage inside metals triggered by electropulsing stimuli. Sci. Rep. 7(1), 7097 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  102. T. Jiang, M.J. Chollier Brym, G. Dubé, A. Lasia, G.M. Brisard, Electrodeposition of aluminium from ionic liquids: part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf. Coat. Technol. 201(1), 1–9 (2006)

    Article  CAS  Google Scholar 

  103. Z. Hsain, J.H. Pikul, Low-energy room-temperature healing of cellular metals. Adv. Funct. Mater. 29(43), 1905631 (2019)

    Article  CAS  Google Scholar 

  104. D. Svetlizky, B. Zheng, X. Wang, S. Jiang, L. Valdevit, J.M. Schoenung, E.J. Lavernia, N. Eliaz, Towards a self-healing aluminum metal matrix composite: design, fabrication, and demonstration. Appl. Mater. Today 37, 102148 (2024)

    Article  Google Scholar 

  105. J.-N. Zhu, Z. Ding, E. Borisov, X. Yao, J.C. Brouwer, A. Popovich, M. Hermans, V. Popovich, Healing cracks in additively manufactured NiTi shape memory alloys. Virtual Phys. Prototyp. 18(1), e2246437 (2023)

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Framework and conceptualization, P.R., and M.B.; outline, P.R., and M.B.; summary of self-healing using SMA wires and a column of low melting point alloy as healing agents in the matrix, V.S.; writing and manuscript preparation, P.R., M.B., and V.S.; table of self-healing systems, P.R., and M.B. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Masum Bellah.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohatgi, P., Bellah, M. & Srivastava, V. Current status and future research imperatives of self-healing metal matrix composites. Journal of Materials Research 39, 1597–1621 (2024). https://doi.org/10.1557/s43578-024-01355-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-024-01355-z

Keywords

Navigation