Log in

Steady-state nanoindentation creep test on β-Sn: A modified constant contact pressure method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Constant contact pressure (CCP) nanoindentation method is an emerging approach to studying the creep properties of materials at the micrometer scale. However, in the literature, the possible loss of contact when applying the CCP method may not accommodate low contact pressures when testing materials at high homologous temperatures. Here, we improve the previous CCP method by changing its control strategy and achieve a steady-state CCP nanoindentation creep on an example material, β-Sn, without the loss of contact. Our results show the measured power law stress exponent on the < 001 >-oriented grain is 7.1–8.5. Nevertheless, our CCP method still suffers from the inevitable scattering of measured contact pressures and strain rates. In this study, we also find that the stress relaxation during 5-s unloading induces significant plastic strain, which affects materials’ creep thereafter.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability

The method file of the latest version of constant contact pressure is available from the corresponding author upon reasonable request. (Specifically applied to KLA nanoindenters).

References

  1. A. Rar, S. Sohn, W.C. Oliver, D.L. Goldsby, T.E. Tullis, G.M. Pharr, MRS Proc. (2004). https://doi.org/10.1557/PROC-841-R4.2

    Article  Google Scholar 

  2. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  ADS  CAS  Google Scholar 

  3. C. Su, E.G. Herbert, S. Sohn, J.A. LaManna, W.C. Oliver, G.M. Pharr, J. Mech. Phys. Solids 61, 517 (2013)

    Article  ADS  Google Scholar 

  4. C.L. Wang, Y.H. Lai, J.C. Huang, T.G. Nieh, Scr. Mater. 62, 175 (2010)

    Article  ADS  CAS  Google Scholar 

  5. C. Minnert, K. Durst, J. Mater. Res. 37, 567 (2022)

    Article  ADS  CAS  Google Scholar 

  6. O. Prach, C. Minnert, K.E. Johanns, K. Durst, J. Mater. Res. 34, 2492 (2019)

    Article  ADS  CAS  Google Scholar 

  7. V. Maier, B. Merle, M. Göken, K. Durst, J. Mater. Res. 28, 1177 (2013)

    Article  ADS  CAS  Google Scholar 

  8. C.L. Wang, T. Mukai, T.G. Nieh, J. Mater. Res. 24, 1615 (2009)

    Article  ADS  CAS  Google Scholar 

  9. K. Durst, V. Maier, Curr. Opin. Solid State Mater. Sci. 19, 340 (2015)

    Article  ADS  CAS  Google Scholar 

  10. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, M. Göken, J. Mater. Res. 26, 1421 (2011)

    Article  ADS  CAS  Google Scholar 

  11. X. Hou, N.M. Jennett, Acta Mater. 60, 4128 (2012)

    Article  ADS  CAS  Google Scholar 

  12. P.S. Phani, W.C. Oliver, G.M. Pharr, Mater. Des. 194, 108923 (2020)

    Article  Google Scholar 

  13. T.H. Courtney, Mechanical behavior or materials, 2nd edn. (Waveland Press Inc., Illinois, 2000), pp.299–313

    Google Scholar 

  14. H. Vafaeenezhad, S.H. Seyedein, M.R. Aboutalebi, A.R. Eivani, J. Electron. Mater. 47, 6868 (2018)

    Article  ADS  CAS  Google Scholar 

  15. A. Yamauchi, M. Kurose, Materials 15, 884 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Science 304, 273 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. S.G. Jadhav, T.R. Bieler, K.N. Subramanian, J.P. Lucas, J. Electron. Mater. 30, 1197 (2001)

    Article  ADS  CAS  Google Scholar 

  18. P. Baral, G. Kermouche, G. Guillonneau, G. Tiphene, J.-M. Bergheau, W.C. Oliver, J.-L. Loubet, Mater. Sci. Eng., A 781, 139246 (2020)

    Article  CAS  Google Scholar 

  19. P. Baral, G. Guillonneau, G. Kermouche, J.M. Bergheau, J.L. Loubet, J. Mater. Res. 32, 2286 (2017)

    Article  ADS  CAS  Google Scholar 

  20. M.D. Mathew, H. Yang, S. Movva, K.L. Murty, Metal. Mater. Trans. A 36, 99 (2005)

    Article  Google Scholar 

  21. J.B. Breen, J. Weertman, JOM 7, 1230 (1955)

    Article  ADS  CAS  Google Scholar 

  22. R.S. Sidhu, X. Deng, N. Chawla, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39, 349 (2008)

    Article  ADS  Google Scholar 

  23. B. Ernst, S. Keim, U. Tetzlaff, Mater. Sci. Eng., A 848, 143392 (2022)

    Article  CAS  Google Scholar 

  24. P. J. Chiang, J.Y. Wu, Y.C. Liao, and C.R. Kao, ICEP-IAAC (2018)

  25. P.J. Chiang, J.Y. Wu, H.Y. Yu, C.R. Kao, JOM 71, 2998 (2019)

    Article  CAS  Google Scholar 

  26. R. Mahmudi, A.R. Geranmayeh, A. Rezaee-Bazzaz, Mater. Sci. Eng., A 448, 287 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical support from M. Haché at the Department of Materials Science and Engineering at the University of Toronto, for the training and maintenance of the iMicro nanoindentation system. L.L. acknowledges the discussion with Dr.-Ing. K. Durst, Dr. V. Maier-Kiener, Dr. D. Kiener, and Dr. S. Van Petegem. The authors acknowledge Z. Carroll and A. Marchesan for proofreading the manuscript.

Funding

This work was supported by NSERC, Discovery Grant #RGPIN-2018-05731 and CFI-John R. Evans Leaders Fund (JELF) Project #38044. L.L.

Author information

Authors and Affiliations

Authors

Contributions

LL contributed to Conceptualization, Methodology, Mechanical experiments, Writing of the original draft, and Writing, reviewing, & editing of the manuscript. ZL contributed to Methodology and Writing, reviewing, & editing of the manuscript. TL contributed to Methodology, SEM characterization, and Writing, reviewing, & editing of the manuscript. YZ contributed to Conceptualization, Supervision, and Writing, reviewing, & editing of the manuscript.

Corresponding author

Correspondence to Yu Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yu Zou was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 381 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, L., Liu, Z., Lyu, T. et al. Steady-state nanoindentation creep test on β-Sn: A modified constant contact pressure method. Journal of Materials Research 39, 881–890 (2024). https://doi.org/10.1557/s43578-023-01277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01277-2

Keywords

Navigation