Log in

Improved ferroelectric and piezoelectric properties and structural correlations in a new ceramic 0.38Ba(Cu1/3Nb2/3)O3–0.62PbTiO3 by MnO2 additive

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The tailoring effects of MnO2 additive on 0.38Ba(Cu1/3Nb2/3)O3–0.62PbTiO3 ceramic have been investigated for structure, dielectric, ferroelectric and piezoelectric properties. XRD, XPS, SEM and EDS techniques have been used to characterize the compositional controlling of different structures and the chemistry of the resulting phases. The MnO2 addition has been found very effective in improving the piezoelectric, dielectric and ferroelectric properties and modifying the crystal structure and microstructure of the parent compound. The Rietveld refinement reveals that the 0.38Ba(Cu1/3Nb2/3)O3–0.62PbTiO3 ceramic has a rare crystal structure with two coexisting tetragonal phases whose tetragonalities and phase fractions transform with the increasing concentration of MnO2 additive. The tetragonal phase of both the end components is retained in this solid solution composition with modified lattice distortion. A small amount of MnO2 additive in the ceramic, typically 1 wt%, gives maximum enhancement of piezoelectric response. A profound correlation between the structure and physical properties has been established for defect-engineered ceramics.

Graphical abstract

  1. (a)

    XRD pattern of 0.38Ba(Cu1/3Nb2/3)O3–0.62PbTiO3 ceramic for varying MnO2 additive content. Inset—Zoom view of XRD pattern for illustration of (200) reflection.

  2. (b)

    Variation of d33 with varying MnO2 additive content for 0.38Ba(Cu1/3Nb2/3)O3–0.62PbTiO3 ceramic.

  3. (c)

    PE hysteresis loop of 0.38Ba(Cu1/3Nb2/3)O3–0.62PbTiO3 ceramic for varying MnO2 additive content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All required data can be found within the article and its supplementary information file.

Code availability

Not applicable.

References

  1. K. Uchino, Advanced Piezoelectric Materials: Science and Technology (Woodhead Publishing, Oxford, 2017)

    Google Scholar 

  2. L. Zia, G.H. Jaffari, N.A. Khan, J.U. Rahman, S. Lee, S.I. Shah, Identification and comparison of peculiarities in physical properties of multiferroic morphotropic phase boundary sintered BiFeO3-xPbTiO3 nano-ceramics. J. Phys. Chem. Solids 150, 109868 (2021). https://doi.org/10.1016/j.jpcs.2020.109868

    Article  CAS  Google Scholar 

  3. R. Pandey, A.K. Singh, Electric field induced cubic to monoclinic phase transition in multiferroic 0.65Bi(Ni1/2Ti1/2)O3–0.35PbTiO3 solid solution. Appl. Phys. Lett. 105, 1–5 (2014). https://doi.org/10.1063/1.4899058

    Article  CAS  Google Scholar 

  4. N.K. Verma, A.K. Singh, Discovery of ordered tetragonal and cubic phases in the morphotropic phase boundary region of (1–x)Bi(Mg3/4W1/4)O3-xPbTiO3 piezoceramics. Ceram. Int. 45, 17395–17408 (2019). https://doi.org/10.1016/j.ceramint.2019.05.300

    Article  CAS  Google Scholar 

  5. R. Pandey, A. Tiwari, A. Upadhyay, A.K. Singh, Phase coexistence and the structure of the morphotropic phase boundary region in (1–x)Bi(Mg1/2Zr1/2)O3-xPbTiO3 piezoceramics. Acta Mater. 76, 198–206 (2014). https://doi.org/10.1016/j.actamat.2014.05.023

    Article  CAS  Google Scholar 

  6. S. Zhang, R. **a, T.R. Shrout, Lead-free piezoelectric ceramics vs. PZT? J. Electroceram. 19, 251–257 (2007). https://doi.org/10.1007/s10832-007-9056-z

    Article  CAS  Google Scholar 

  7. H. Jaffe, Piezoelectric ceramics. J. Am. Ceram. Soc. 41, 494–498 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb12903.x

    Article  CAS  Google Scholar 

  8. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li et al., Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018). https://doi.org/10.1038/s41563-018-0034-4

    Article  CAS  Google Scholar 

  9. M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H.K. Mao et al., Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008). https://doi.org/10.1038/nature06459

    Article  CAS  Google Scholar 

  10. F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu et al., The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 1–9 (2016). https://doi.org/10.1038/ncomms13807

    Article  CAS  Google Scholar 

  11. S. Harada, Y. Takagi, H. Nagata, T. Takenaka, Quenching effects on electrical properties of Cu-doped (Bi1/2Na1/2)TiO3-based solid solution ceramics. J. Mater. Res. 36, 1097–1104 (2021). https://doi.org/10.1557/s43578-020-00048-7

    Article  CAS  Google Scholar 

  12. Y. Yan, Z. Li, L. **, H. Du, M. Zhang, D. Zhang et al., Extremely high piezoelectric properties in Pb-based ceramics through integrating phase boundary and defect engineering. ACS Appl. Mater. Interfaces 13, 38517–38525 (2021). https://doi.org/10.1021/acsami.1c10298

    Article  CAS  Google Scholar 

  13. D. Lin, S. Zhang, C. Cai, W. Liu, Domain size engineering in 0.5%MnO2-(K0.5Na0.5)NbO3 lead free piezoelectric crystals. J. Appl. Phys. 117, 3–8 (2015). https://doi.org/10.1063/1.4913208

    Article  CAS  Google Scholar 

  14. S. Priya, K. Uchino, J. Ryu, C.W. Ahn, S. Nahm, Induction of combinatory characteristics by relaxor modification of Pb(Zr0.5Ti0.5)O3. Appl. Phys. Lett. 83, 5020–5022 (2003). https://doi.org/10.1063/1.1634695

    Article  CAS  Google Scholar 

  15. Y. Yan, A. Kumar, M. Correa, K.H. Cho, R.S. Katiyar, S. Priya, Phase transition and temperature stability of piezoelectric properties in Mn-modified Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics. Appl. Phys. Lett. 100, 1–5 (2012). https://doi.org/10.1063/1.3703124

    Article  CAS  Google Scholar 

  16. Y. Deng, J. Wang, C. Zhang, H. Ma, C. Bai, D. Liu et al., Structural and electric properties of MnO2-doped KNN-LT lead-free piezoelectric ceramics. Crystals 10, 1–8 (2020). https://doi.org/10.3390/cryst10080705

    Article  CAS  Google Scholar 

  17. Q. Liu, F.Y. Zhu, L. Zhao, K. Wang, L. Li, J.F. Li et al., Further enhancing piezoelectric properties by adding MnO2 in AgSbO3-modified (Li, K, Na)(Nb, Ta)O3 lead-free piezoceramics. J. Am. Ceram. Soc. 99, 3670–3676 (2016). https://doi.org/10.1111/jace.14412

    Article  CAS  Google Scholar 

  18. C.S. Yu, H.L. Hsieh, Piezoelectric properties of Pb(Ni1/3, Sb2/3)O3-PbTiO3-PbZrO3 ceramics modified with MnO2 additive. J. Eur. Ceram. Soc. 25, 2425–2427 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.075

    Article  CAS  Google Scholar 

  19. H. Liu, R. Nie, Y. Yue, Q. Zhang, Q. Chen, J. Zhu et al., Effect of MnO2 do** on piezoelectric, dielectric and ferroelectric properties of PNN–PZT ceramics. Ceram. Int. 41, 11359–11364 (2015). https://doi.org/10.1016/j.ceramint.2015.05.094

    Article  CAS  Google Scholar 

  20. S.J. Yoon, S.Y. Yoo, J.H. Moon, H.J. Jung, H.J. Kim, Effects of La2O3 and MnO2 on the piezoelectric properties of 0.02Pb(Y2/3W1/3)O3–0.98Pb(Zr0.52Ti0.48)O3. J. Mater. Res. (1996). https://doi.org/10.1557/JMR.1996.0041

    Article  Google Scholar 

  21. X. Wang, P. Liang, X. Chao, Z. Yang, Dielectric properties and impedance spectroscopy of MnCO3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Am. Ceram. Soc. 98, 1506–1514 (2015). https://doi.org/10.1111/jace.13481

    Article  CAS  Google Scholar 

  22. L.X. He, C.E. Li, Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. J. Mater. Sci. 35, 2477–2480 (2000). https://doi.org/10.1023/A:1004717702149

    Article  CAS  Google Scholar 

  23. A. Bradeško, M. Vrabelj, L. Fulanović, Š Svirskas, M. Ivanov, R. Katiliūte et al., Implications of acceptor do** in the polarization and electrocaloric response of 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 relaxor ferroelectric ceramics. J. Mater. Chem. C 9, 3204–3214 (2021). https://doi.org/10.1039/d0tc05854h

    Article  CAS  Google Scholar 

  24. T. Zheng, H. Deng, W. Zhou, X. Zhai, H. Cao, L. Yu et al., Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements do**. Ceram. Int. 42, 6033–6038 (2016). https://doi.org/10.1016/j.ceramint.2015.12.157

    Article  CAS  Google Scholar 

  25. W. Peng, L. Li, S. Yu, P. Yang, K. Xu, Dielectric properties, microstructure and charge compensation of MnO2-doped BaTiO3-based ceramics in a reducing atmosphere. Ceram. Int. 47, 29191–29196 (2021). https://doi.org/10.1016/j.ceramint.2021.07.083

    Article  CAS  Google Scholar 

  26. K. Toshio, S. Toshimasa, T. Takkai, D. Masaki, Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3. Jpn. Soc. Appl. Phys. 31, 3058–3060 (1992). https://doi.org/10.1143/JJAP.31.3058

    Article  Google Scholar 

  27. C. Zhou, X. Ke, Y. Yao, S. Yang, Y. Ji, W. Liu et al., Evolution from successive phase transitions to ‘morphotropic phase boundary’ in BaTiO3-based ferroelectrics. Appl. Phys. Lett. 112, 1–6 (2018). https://doi.org/10.1063/1.5028302

    Article  CAS  Google Scholar 

  28. S. Priya, A. Ando, Y. Sakabe, Nonlead perovskite materials: Ba(Li1/4Nb3/4)O3 and Ba(Cu1/3Nb2/3)O3. J. Appl. Phys. 94, 1171–1177 (2003). https://doi.org/10.1063/1.1585121

    Article  CAS  Google Scholar 

  29. K. Abdelmadjid, F. Gheorghiu, M. Zerdali, M. Kadri, S. Hamzaoui, Preparation, structural and functional properties of PbTiO3-δ ceramics. Ceram. Int. 45, 9043–9047 (2019). https://doi.org/10.1016/j.ceramint.2019.01.240

    Article  CAS  Google Scholar 

  30. W. Zhang, N. Kumada, Y. Yonesaki, T. Takei, N. Kinomura, T. Hayashi et al., Ferroelectric perovskite-type barium copper niobate: BaCu1/3Nb2/3O3. J. Solid State Chem. 179, 4052–4055 (2006). https://doi.org/10.1016/j.jssc.2006.08.008

    Article  CAS  Google Scholar 

  31. H. Langbein, M. Bremer, I. Krabbes, CuX2O6 and Ba3CuX2O9 (X = Nb, Ta): influence of the preparation conditions on phase formation and phase composition. Solid State Ion. 101–103, 579–584 (1997). https://doi.org/10.1016/s0167-2738(97)00382-2

    Article  Google Scholar 

  32. W.M. Zhu, H.Y. Guo, Z.G. Ye, Structure and properties of multiferroic (1–x)BiFeO3-x PbTiO3 single crystals. J. Mater. Res. 22, 2136–2143 (2007). https://doi.org/10.1557/jmr.2007.0268

    Article  CAS  Google Scholar 

  33. A.K. Singh, D. Pandey, Evidence for MB and MC phases in the morphotropic phase boundary region of (1–x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: a rietveld study. Phys. Rev. B 67, 064102 (2003). https://doi.org/10.1103/physrevb.67.064102

    Article  Google Scholar 

  34. J. Praveen, P.R. Arjunwadkar, M.A. Nagarbawadi, Structural characterization of lead titanate (PbTiO3) sample using FULLPROF. IOSR J. Appl. Phys. 8, 57–60 (2016). https://doi.org/10.9790/4861-0806055760

    Article  Google Scholar 

  35. T. Li, M. Xu, K. Peng, Y. Sun, M. Wang, H. Dai et al., Evolution of microstructure, defect, optoelectronic and magnetic properties of Cu1-xCaxFeO2 ceramics. J. Phys. Chem. Solids 151, 109910 (2021). https://doi.org/10.1016/j.jpcs.2020.109910

    Article  CAS  Google Scholar 

  36. E. Brzozowski, M.S. Castro, Grain growth control in Nb-doped BaTiO3. J. Mater. Process. Technol. 168, 464–470 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.246

    Article  CAS  Google Scholar 

  37. M.J. Brova, B.H. Watson, R.L. Walton, E.R. Kupp, M.A. Fanton, R.J. Meyer et al., Templated grain growth of high coercive field CuO-doped textured PYN-PMN-PT ceramics. J. Am. Ceram. Soc. 103, 6149–6156 (2020). https://doi.org/10.1111/jace.17349

    Article  CAS  Google Scholar 

  38. W.A. Goddard, On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf. Sci. 284, 1119–1125 (2021). https://doi.org/10.1007/978-3-030-18778-1_51

    Article  CAS  Google Scholar 

  39. A. Ono, Preparation of new perovskite-type oxides Ba2.5Nb1.5CuO7.25 and Sr3Ta2CuO9. J. Mater. Sci. Lett. 11, 114–115 (1992). https://doi.org/10.1007/BF00724616

    Article  CAS  Google Scholar 

  40. Y. Kamimura, B.Y. Lee, K. Yazawa, H. Funakubo, T. Iijima, H. Uchida, Fabrication and evaluation of Mn-substituted Ba(Cu1/3Nb2/3)O3 ceramics. IOP Conf. Ser. Mater. Sci. Eng. 18, 2–6 (2011). https://doi.org/10.1088/1757-899X/18/9/092038

    Article  Google Scholar 

  41. R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. Sect. B 25, 925–946 (1969). https://doi.org/10.1107/s0567740869003220

    Article  CAS  Google Scholar 

  42. F.A. Kröger, H.J. Vink, Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 3, 307–435 (1956). https://doi.org/10.1016/S0081-1947(08)60135-6

    Article  Google Scholar 

  43. R.R. McQuade, P. Mardilovich, N. Kumar, D.P. Cann, Conduction properties of acceptor-doped BaTiO3–Bi(Zn1/2Ti1/2)O3-based ceramics. J. Mater. Sci. 55, 16290–16299 (2020). https://doi.org/10.1007/s10853-020-05175-4

    Article  CAS  Google Scholar 

  44. T.M. Kamel, G. de With, Poling of hard ferroelectric PZT ceramics. J. Eur. Ceram. Soc. 28, 1827–1838 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.023

    Article  CAS  Google Scholar 

  45. H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang et al., The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 01, 107–118 (2011). https://doi.org/10.1142/s2010135x11000148

    Article  CAS  Google Scholar 

  46. G.R. Gajula, L.R. Buddiga, M. Dasari, Influence of Gd/Nb on activation energy, relaxation response, impedance, nyquist plots and dielectric studies at high frequency of BaTiO3-Li0.5Fe2.5O4 solid compounds. Results Phys. 18, 103196 (2020). https://doi.org/10.1016/j.rinp.2020.103196

    Article  Google Scholar 

  47. A. Schönhals, F. Kremer, in: Broadband Dielectric Spectroscopy (Springer, Berlin, 2003), pp. 59–98. https://doi.org/10.1007/978-3-642-56120-7_3.

  48. L. Liu, C. Wang, X. Sun, G. Wang, C. Lei, T. Li, Oxygen-vacancy-related relaxations of Sr3CuNb2O9 at high temperatures. J. Alloys Compd. 552, 279–282 (2013). https://doi.org/10.1016/j.jallcom.2012.10.081

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Central Instrumental Facility, Indian Institute of Technology (Banaras Hindu University) for providing experimental facility such as XPS, HR-XRD, SEM and EDS. AK Singh acknowledges the financial support from Science and Engineering Research Board-Department of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

KP—Conceptualization, Methodology, Investigation, Writing (Original draft, Visualization); AKS: Supervision, Conceptualization, Resources, Writing (Review & Editing).

Corresponding author

Correspondence to Akhilesh Kumar Singh.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, K., Singh, A.K. Improved ferroelectric and piezoelectric properties and structural correlations in a new ceramic 0.38Ba(Cu1/3Nb2/3)O3–0.62PbTiO3 by MnO2 additive. Journal of Materials Research 38, 2031–2048 (2023). https://doi.org/10.1557/s43578-023-00940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00940-y

Keywords

Navigation