Log in

A thermally sensitive energy-absorbing composite functionalized by nanoporous carbon

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A polypropylene-matrix composite material functionalized by nanoporous particulates was produced. When the temperature is relatively low, the matrix dominates the system behavior. When the temperature is relatively high, with a sufficiently large external pressure the polymer phase can be intruded into the nanopores, providing an energy absorption mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Barbero: Introduction to Composite Materials Design (Taylor Francis, Philadelphia, PA, 1999).

    Google Scholar 

  2. H.F. Brinson and L.C. Brinson: Polymer Engineering Science and Viscoelasticity (Springer, New York, 2008).

    Book  Google Scholar 

  3. A.R. Bunsell: Fiber Reinforcements for Composite Materials (Elsevier, New York, 1988).

    Google Scholar 

  4. S. Mazumdar: Composites Manufacturing: Materials, Product, and Process Engineering (CRC Press, Boca Raton, FL, 2002).

    Google Scholar 

  5. T.J. Pinnavaia and G.W. Beall: Polymer-Clay Nanocomposites (John Wiley Sons, New York, 2000).

    Google Scholar 

  6. I.S. Daniel and O. Ishai: Engineering Mechanics of Composite Materials (Oxford University Press, New York, 1994).

    Google Scholar 

  7. G. Lu and T. Yu: Energy Absorption of Structures and Materials (Woodhead Publishing, Abington, UK, 2003).

    Book  Google Scholar 

  8. T.E. Twardowski: Introduction to Nanocomposite Materials (Destech Publishing, Lancaster, PA, 2007).

    Google Scholar 

  9. H.S. Park and W.K. Liu: An introduction and tutorial on multiple scale analysis in solids. Comput. Methods Appl. Mech. Eng. 193, 1733 (2004).

    Article  Google Scholar 

  10. X. Kong, S.S. Chakravarthula, and Y. Qiao: Evolution of collective damage in a polyamide 6-silicate nanocomposite. Int. J. Solids Struct. 43, 5969 (2006).

    Article  CAS  Google Scholar 

  11. A. Han, V.K. Punyamurtula, T. Kim, and Y. Qiao: The upper limit of energy density of nanoporous materials functionalized liquid. J. Mater. Eng. Perform. 17, 326 (2008).

    Article  CAS  Google Scholar 

  12. F.B. Surani and Y. Qiao: An energy absorbing polyelectrolyte gel matrix composite material. Composites Part A 37, 1554 (2006).

    Article  Google Scholar 

  13. A. Han, V.K. Punyamurtula, and Y. Qiao: Infiltration of liquid metals in a nanoporous carbon. Philos. Mag. Lett. 88, 67 (2008).

    Article  CAS  Google Scholar 

  14. A. Han, V.K. Punyamurtula, and Y. Qiao: Effects of decomposition treatment temperature on infiltration pressure of a surface modified nanoporous silica gel. Chem. Eng. J. 139, 426 (2008).

    Article  CAS  Google Scholar 

  15. F.B. Surani, A. Han, and Y. Qiao: Thermal recoverability of a polyelectrolyte modified, nanoporous silica based system. J. Mater. Res. 21, 2389 (2006).

    Article  CAS  Google Scholar 

  16. F.B. Surani and Y. Qiao: Energy absorption of a polyacrylic acid partial sodium salt modified nanoporous system. J. Mater. Res. 21, 1327 (2006).

    Article  CAS  Google Scholar 

  17. V. Nesterenko: Dynamics of Heterogeneous Materials (Springer, New York, 2001).

    Book  Google Scholar 

  18. A. Han, V.K. Punyamurtula, and Y. Qiao: Heat generation associated with pressure induced infiltration in a nanoporous silica gel. J. Mater. Res. 23, 1902 (2008).

    Article  CAS  Google Scholar 

  19. N. Yoganandan, J. Zhang, and F. Pintar: Force and acceleration corridors from lateral head impact. Traffic Inj. Prev. 5(4), 368 (2004).

    Article  Google Scholar 

  20. M. Kleman and O.D. Lavrentovich: Soft Matter Physics (Springer- Verlag, New York, 2003).

    Google Scholar 

  21. H. Ibach: Physics of Surfaces and Interfaces (Springer-Verlag, Berlin, 2006).

    Google Scholar 

  22. A. Han and Y. Qiao: Controlling infiltration pressure of a nanoporous silica gel via surface treatment. Chem. Lett. 36, 882 (2007).

    Article  CAS  Google Scholar 

  23. Y. Qiao, G. Cao, and X. Chen: Effects of gas molecules on nanofluidic behaviors. J. Am. Chem. Soc. 129, 2355 (2007).

    Article  CAS  Google Scholar 

  24. A. Han, X. Kong, Y. Qiao. Pressure induced infiltration in nanopores. J. Appl. Phys. 100, 014308 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Punyamurtula, V.K., Han, A. et al. A thermally sensitive energy-absorbing composite functionalized by nanoporous carbon. Journal of Materials Research 24, 3308–3312 (2009). https://doi.org/10.1557/jmr.2009.0408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0408

Navigation