Log in

Mathematical Intuition, Deep Learning, and Robbins’ Problem

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

The present article is an essay about mathematical intuition and Artificial intelligence (A.I.), followed by a guided excursion to Robbins’ Problem of Optimal Stop**. The latter is still open. The first part of the essay (Sect. 1 to Sect. 4), is written in a narrative style with well-known examples and an easily accessible terminology. It is easy to read. Its goal is to motivate mathematicians to think about certain aspects of A.I., and to prepare people in A.I. for the special features of Robbins’ problem. The major objective is presented in the second part (Sect. 5 to Sect. 13). It is to guide readers through the probabilistic intuition behind Robbins’ problem and to show why A.I., and in particular Deep Learning, may contribute an essential part in its solution. This article is an essay, because it contains no new mathematical results, and no implementation of deep learning either. However it presents a clear mission statement which seems important to us. We substantiate it by proposing two concrete challenges to view and solve the main part of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. One often ranks in opposite order, namely the largest value is rank 1, the second largest value rank 2 etc. Our way of ranking has the advantage that ranks increase as the \(X_{j}\) increase.

  2. However, some models explain very well why certain results in Mathematics must hold in great generality. See e.g. the elementary approach to Taylor’s polynomial in B. [6].

  3. Robbins announced this problem by saying “Finally, here is the problem which I’d like to see solved before I die”, and he looked into the audience in a way we all felt he meant it. So much for the name. Sadly, Robbins’ wish did not realize. He died February 12th, 2001.

  4. According to S.M. Samuels, L. Shepp, and D. Siegmund, (private communications), Robbins was usually generous in sharing scientific results, but on “his” problem he seemed particular.

References

  1. Acemoglu, D., Restrepo, P.: Artificial intelligence, automation and work. In: Agrawal, A., Gans, J., Goldfarb, A. (eds.) The Economics of Artificial Intelligence: An Agenda, pp. 197–236. University of Chicago Press, Chicago (2019)

    Chapter  Google Scholar 

  2. Allaart, P.C., Allen, A.: A random walk version of Robbins’ problem: small horizon. Math. Appl. 47(2), 293–312 (2019)

    MathSciNet  Google Scholar 

  3. Appel, K., Haken, W.: Every planar map is four colorable. I. Discharging. Ill. J. Math. 21(3), 429–490 (1977)

    MathSciNet  Google Scholar 

  4. Assaf, D., Samuel-Cahn, E.: The secretary problem: minimizing the expected rank with I.I.D. random variables. Adv. Appl. Probab. 28, 828–852 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bayón, L., Fortuny Ayuso, P., Grau Ribas, J.M., Oller-Marcén, A.M., Ruiz, M.M.: The best-or-worst and the postdoc problem. J. Comb. Optim. 35, 703–723 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bruss, F.T.: A probabilistic approach to an approximation problem. Ann. Soc. Sci. Brux. 96, 91–97 (1982)

    MathSciNet  Google Scholar 

  7. Bruss, F.T.: A unified approach to a class of best choice problems with an unknown number of options. Ann. Probab. 12, 882–889 (1984)

    Article  MathSciNet  Google Scholar 

  8. Bruss, F.T.: In: Optimal Selection, Learning and Machine Implementation. Contemporary Mathematics, Amer. Math. Society, vol. 125, pp. 3–35 (1992)

    Google Scholar 

  9. Bruss, F.T.: What is known about Robbins’ problem? J. Appl. Probab. 42, 108–120 (2005)

    Article  MathSciNet  Google Scholar 

  10. Bruss, F.T., Ferguson, T.S.: Minimizing the expected rank with full information. J. Appl. Probab. 30, 616–626 (1993)

    Article  MathSciNet  Google Scholar 

  11. Bruss, F.T., Ferguson, T.S.: Half-prophets and Robbins’ problem of minimizing the expected rank. In: Athens Conference on Applied Probability and Time Series, Springer Lecture Notes in Statistics, vol. 114. pp. 1–17. (1996)

    Chapter  Google Scholar 

  12. Bruss, F.T., Samuels, S.M.: Conditions for quasi-stationarity of the Bayes rule in selection problems with an unknown number of rankable options. Ann. Probab. 18, 877–886 (1990)

    Article  MathSciNet  Google Scholar 

  13. Bruss, F.T., Swan, Y.C.: The Poisson-embedded version of Robbins’ problem of minimizing the expected rank. J. Appl. Probab. 46, 1–18 (2009)

    Article  MathSciNet  Google Scholar 

  14. Bruss, F.T., Mahiat, H., Pierard, M.: Sur une fonction génératrice du nombre de records d’une suite de variables aléatoires de longueur aéatoire. Ann. Soc. Sci. Brux. 100(4), 139–149 (1986)

    Google Scholar 

  15. Chow, Y.S., Moriguti, S., Robbins, H., Samuels, S.M.: Optimal selection based on relative rank (the secretary problem). Isr. J. Math. 2, 81–90 (1964)

    Article  MathSciNet  Google Scholar 

  16. Christensen, S., Salminen, P., Ta, B.Q.: Optimal stop** of strong Markov processes. Stoch. Process. Appl. 123(3), 1138–1159 (2013)

    Article  MathSciNet  Google Scholar 

  17. Courant, R., Robbins, H.: What Is Mathematics? 1st edn. Oxford University Press, London (1941)

    Google Scholar 

  18. De la Vallée Poussin, A.: Théorie analytique des nombres premiers. Ann. Soc. Sci. Brux 20, 153–250, 281–397 (1897)

    Google Scholar 

  19. Dendievel, R., Swan, Y.C.: One step more in Robbins’ problem: explicit solution for the case \(n=4\). Math. Appl. 44(1), 135–148 (2016)

    MathSciNet  Google Scholar 

  20. Fathan, A., Delage, E.: Deep reinforcement learning for optimal stop** with application in financial engineering (2021). ar**v:2105.08877v1

  21. Gnedin, A.: Optimal stop** with rank-dependent loss. J. Appl. Probab. 44, 996–1011 (2007)

    Article  MathSciNet  Google Scholar 

  22. Gnedin, A., Iksanov, A.: Moments of random sums and Robbins’ problem of optimal stop**. J. Appl. Probab. 48, 1197–1199 (2011)

    Article  MathSciNet  Google Scholar 

  23. Gnedin, A., Miretskiy, D.: Winning rate in the full-information best-choice problem. J. Appl. Probab. 44, 560–565 (2007)

    Article  MathSciNet  Google Scholar 

  24. Goldenshluger, A., Malinovsky, Y., Zeevi, A.: A unified approach for solving sequential selection problems. Probab. Surv. 17, 214–256 (2020)

    Article  MathSciNet  Google Scholar 

  25. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  26. Grau Ribas, J.M.: An extension of the Last-Success-Problem. Stat. Probab. Lett. 156 (2020)

  27. Kühne, R., Rüschendorf, L.: Approximation of optimal stop** problems. Stoch. Process. Appl. 90, 303–325 (2000)

    Article  MathSciNet  Google Scholar 

  28. Kühne, R., Rüschendorf, L.: Approximate optimal stop** of dependent sequences. Theory Probab. Appl. 48(3), 465–480 (2003)

    Article  MathSciNet  Google Scholar 

  29. Li, X., Lee, C.G.: V-learning: an adaptive reinforcement learning algorithm for the optimal stop** problem. Expert Syst. Appl. (2023). Avail. online, 8 June 2023

  30. Meier, M., Sögner, L.: A new strategy for Robbins’ problem of optimal stop**. J. Appl. Probab. 54, 331–336 (2017)

    Article  MathSciNet  Google Scholar 

  31. Nicholson, C.: A beginners guide to deep learning and neural networks (2020). https://wiki.pathmind.com/neural-network

  32. Presman, E.L., Sonin, I.M.: The best choice problem for a random number of objects. Theory Probab. Appl. 17, 657–668 (1972)

    Article  Google Scholar 

  33. Ramsey, D.M.: A secretary problem with missing observations. Math. Appl. 44(1), 149–166 (2016)

    MathSciNet  Google Scholar 

  34. Rüschendorf, L.: Approximative solutions of optimal stop** and selection problems. Math. Appl. 44(1), 17–44 (2016)

    MathSciNet  Google Scholar 

  35. Rutten, X.: Etude et optimisation des fonctions d’utilité générales. Mémoire de licence en sciences mathématiques, Faculté des sciences, Université de Namur (1987)

  36. Simonis, E.: Problèmes de sélection optimale: Stratégies Autodidactes. Mémoire de licence en sciences mathématiques, Faculté des sciences, Université de Namur (1987)

  37. Szajowski, K.: A game version of the Cowan-Zabczyk-Bruss problem. Stat. Probab. Lett. 77, 1683–1689 (2007)

    Article  MathSciNet  Google Scholar 

  38. Szajowski, K.: A rank-based selection with cardinal payoffs and a cost of choice. Sci. Math. Jpn. 69(2), 69–77 (2009)

    MathSciNet  Google Scholar 

  39. Vanderbei, R.J.: Optimal choice of a subset of a population. Math. Oper. Res. 5, 481–486 (1980)

    Article  MathSciNet  Google Scholar 

  40. Villeneuve, S.: On threshold strategies and the smooth-fit principle for optimal stop** problems. J. Appl. Probab. 44, 181–198 (2007)

    Article  MathSciNet  Google Scholar 

  41. Wang, X., Han, Y., Leung, V.C.M., Niato, D., Yan, X., Chen, X.: Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutor. 22, 869–904 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

The author thanks G. Bontempi and J.-F. Raskin for discussions on deep learning, and M. Duerinckx and P. Ernst for earlier discussions on Robbins’ problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Thomas Bruss.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruss, F.T. Mathematical Intuition, Deep Learning, and Robbins’ Problem. Jahresber. Dtsch. Math. Ver. 126, 69–93 (2024). https://doi.org/10.1365/s13291-024-00277-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-024-00277-3

Keywords

Mathematics Subject Classification

Navigation