Key Points

  • Cross-sectional studies and interventional studies show a medium-sized positive effect of physical activity on creative ideation performance.

  • The effects of chronical physical activity are stronger compared to the effects of acute physical activity.

  • Rigorously conducted randomized controlled intervention studies and more cross-sectional studies are needed to broaden the evidence.

Introduction

Physical activity facilitates (mental) health and increases cognitive functions such as executive control, attention, and memory processes [1,2,3,4,5,6,7]. The dynamic interplay of specific cognitive functions is essential to produce creative solutions that are surprising, original, and applicable [8]. While research on creativity has long been restricted to classic domains such as music, science, or the arts, recent studies have begun to discover the prominent role of creativity in the domain of sports. For instance, creative cognition and cognitive flexibility can facilitate game-related decision-making and prevent sport injuries [9]. Furthermore, creative cognition is an important factor in team sports with the potential to determine victory or defeat [10]. Although the impact of physical activity on cognitive functions is well known, reviews and meta-analyses have largely ignored its potentially enhancing effect on creative idea generation.

Can physical activity stop mental blocks and increase the uniqueness of ideas [8, 11,12,13]? And if so, can even a short run boost creative thoughts? Or is it necessary to train for weeks to finally achieve a higher creative output? Are different domains of creative ideation affected to the same extent? Is the effect of physical activity restricted to quantitative facets of creativity (e.g., number of generated ideas), or does it similarly apply to creative quality (e.g., originality)? Although an increasing number of empirical studies have targeted these exciting questions, not all of them have confirmed a positive link between physical activity and participants’ creative potential (i.e., performance in a divergent thinking task [14]; for a critical review see [15]). The increasing number of studies and inconsistent results call for a meta-analysis, which quantifies the overall effect of physical activity on creative ideation and examine relevant moderators. But first, why should a walk, a run, or a higher fitness level boost creativity at all?

Importantly, creative ideation can be considered the result of a complex interplay of cognitive functions, which is outlined in prominent dual-process models of creative thinking [16, 17]. Specifically, dual-process models suggest a dynamic interplay of associative (divergent) and executive (convergent) processes that establish generative and elaborative/evaluative modes of creative thinking. Furthermore, creative ideation performance is associated with higher executive control [18,19,20,21,22] and fluid as well as crystallized intelligence [23]. In line with these behavioral findings, neuroscientific creativity studies indicated higher involvement of brain areas associated with executive control [24,25,26] (but see [27]; for meta-analyses see [28,29,30]), memory processes [31, 32], and internal attention [33] during creative idea generation tasks. Taken together, physical activity may increase creative ideation performance via improving executive control, attention processes, and memory [34, 35].

The enhancement of cognitive functioning through physical activity is a field of increased interest [6]. Etnier and colleagues [2] conducted one of the first meta-analyses on cognitive functioning and physical activity, which showed a small positive overall effect (d = 0.25). Chang et al. [36] indicated a positive effect of acute (i.e., one single bout of) exercise on information processing, attention, crystallized intelligence, and executive functions [37,38,39]. Ludyga et al. [40] confirmed these findings and suggested that age is an important moderator, as the effects of physical activity were strongest among preadolescent children and older adults. Wilke et al. [9] extended this finding to acute effects of resistance training (i.e., strength training involving series of different exercises in the upper and lower limbs), which also enhances cognitive functioning in healthy adults. Furthermore, the meta-analysis of Etnier et al. [34] indicated that not only single bouts of exercises, but also chronic (i.e., longer lasting and repeated) physical activities have a positive pooled effect on cognitive performance [6, 7]. This indicates that a broad range of physical activities is associated with a variety of cognitive function increases. However, although the impact of acute and chronic physical activity on basic cognitive functions has been replicated in several meta-analyses [9, 34, 35, 41, 42], it is still unclear if physical activity enhances creative ideation performance.

While some empirical studies indicated an association between creative ideation performance and acute as well as chronic physical activity [43, 44], others did not [45]. To the best of our knowledge, meta-analytic approaches on this topic are very rare [15, 46]. Only Chang et al. [36] evaluated performance changes in divergent thinking tasks (i.e., alternate uses tasks) after acute physical activity. They found a weakly positive, but not significant pooled effect size of d = 0.11. Yet, this analysis included only 26 effects and was not specifically designed to investigate creative ideation performance. Hence, systematic quantitative aggregation of studies examining associations between physical activity and creative ideation is needed.

Of note, creativity research on the boosting effects of physical activity is rather diverse, and studies largely differ in design (e.g., interventional, cross-sectional), type of physical activity (e.g., aerobic exercise, running), implementation of intervention (e.g., acute, chronic), time of measurement (e.g., during, after an intervention), and the creativity domain of the task (e.g., verbal, figural). Furthermore, the extant literature differentiates between qualitative and quantitative indicators of creative ideation performance [23]. In particular, the number of different ideas (i.e., fluency) is the most frequently applied quantitative measure of creative thinking, besides flexibility (i.e., number of different categories used to produce ideas) and elaboration (i.e., number of details added to an idea). Qualitative indicators, on the other hand, are originality and other measures of creativity, which are traditionally assessed with frequency-based scores and external creativity ratings [47, 48]. Furthermore, some studies utilized composite scores of creativity (e.g., adding up the originality of all responses), thus aggregating qualitative and quantitative aspects [49].

Using multiple creativity indices from single studies violates the criterion of effect size independence in meta-analysis, which is why this study applied a multilevel meta-analytic approach with three levels [50,51,52]. We performed two separate analyses. First, we focused on cross-sectional data, which allowed analysis of the association between habitual physical activity (both self-reported and behavioral) and creative ideation performance. Second, we meta-analyzed intervention studies, which experimentally modified physical activity to increase creative ideation performance. This two-step approach allowed us to investigate, first, if an association between habitual physical activity and creative ideation performance exists [43] and, second, whether physical activity may have causal effects on creative ideation performance outcomes [6, 53].

Methods

Search Strategy

A systematic literature search for studies examining physical activity and creative ideation performance was carried out, based on the guidelines of the PRISMA statement [54]. Relevant articles were identified in the following online databases: Scopus, PsyAr** the artistic brain: common and distinct neural activations associated with musical, drawing, and literary creativity. Hum Brain Mapp. 2020;41:3403–19. https://doi.org/10.1002/hbm.25025 ." href="#ref-CR135" id="ref-link-section-d13559625e3974_2">135,136]. This is in accordance with reviews concluding that physical activity has the potential to improve the structural plasticity and function of the brain throughout the life span, specifically in neurological and psychiatric patients [5, 7, 39, 137].

The neuro-protective role of physical activity was coined brain health and could constitute an important target of future creativity research [5, 7, 39, 41], where creative ideation performance may serve as a meaningful behavioral indicator of a flexible, original, innovative, and healthy brain in children as well as in adults. Importantly and critically, however, research on boosting creative performance by means of physical activity needs further rigorous and well-powered investigations in randomized controlled trials and with proper control groups involving neurophysiological methods (see [39], for cognitive functions). Specifically, the dose–response relationship (i.e., effect of duration, repetition, and intensity) between physical activity and creative ideation performance increases seems to be an important target for future research in order to further confirm causality [6, 9, 34, 53, 119].

Conclusion

Creative cognition is relevant for team sports [138], and physical activity and sports, in turn, can boost creative ideation performance. The present meta-analysis highlights this synergistic effect [39] by suggesting an impact of physical activity on creative idea generation. The observed enhancing medium-sized effect is in line with the current state of knowledge assuming a boost of basic cognitive functions, such as executive control, attention, and memory due to physical activity [2, 7, 119]. Furthermore, the present study expands this evidence to the field of creativity research and suggests that physical activity could increase the complex and dynamic interplay of cognitive functions, ultimately facilitating creative ideation. The present findings encourage further investigations in representative samples to learn more about the mechanisms of creativity enhancement via physical activity, which is a growing field of interest relevant for health, sport, and sports medicine [72, 82, 139]. In the future, rigorous cross-sectional and experimental intervention research could help to further develop public health recommendations for physical activity as an important lifestyle factor [39].