Background

The novel coronavirus disease 2019 (COVID-19) pandemic has posed a great health threat globally. As of June 16, 2020, according to the latest situation report from WHO, the SARS-CoV-2 has infected 7,823,289 people around the world and caused 431,541 deaths [1]. The population is generally susceptible to the SARS-CoV-2. Unfortunately, much of the pathogenesis and optimal therapy of COVID-19 remains unclear.

Rapidly accumulating evidences have shown the risk factors for severe illness and death in COVID-19. Based on current studies, older age has been identified to be associated with an increased risk of death in COVID-19, as well as comorbidities [

Table 2 The laboratory findings of COVID-19 in middle-aged (40–59 years) patients without comorbidities

The complications and outcomes of middle-aged (40–59 years) COVID-19 patients without comorbidities

Among the 119 patients who were discharged or died at the study end point, 11 (9.24%) were treated in the ICU, 18 (15.1%) received mechanical ventilation, 2 (1.68%) were treated with continuous renal replacement therapy, and 5 (4.2%) died (Table 3). ARDS (26, 21.8%) was the most common complications, followed by acute liver injury (16, 13.4%), septic shock (5, 4.3%), acute cardiac injury (4, 3.4%) and acute kidney injury (3, 2.5%). Severe patients yielded significantly higher rates of any complication as compared with non-severe patients. The median time from symptom onset to ARDS in severe and non-severe patients was 8 days (IQR, 7–12) and 10 days (IQR, 8–11), respectively. The median time from symptom onset to other complications was all about 2 weeks. Mortality rate in severe patients was 27.8%, while there was no death in the non-severe patients. The general characteristics and cause of death of 5 non-survived COVID-19 middle-aged patients without comorbidities were shown in Table 4. Severe ARDS was the main cause of death.

Table 3 The complications and outcomes of COVID-19 in middle-aged (40–59 years) patients without comorbidities
Table 4 General characteristics and cause of death of 5 non-survived COVID-19 middle-aged patients without comorbidities

Risk factors for severe COVID-19 of middle-aged patients without comorbidities

The results of univariate and multivariate logistic regression models assessing the relations between variables on admission and the development of severe COVID-19 were shown in Table 5. In univariable analysis, high fever, dyspnea, leucocytosis, lymphopenia, elevated NLR, lactate dehydrogenase, hypoalbuminemia, D-dimer greater than 1 μg/ml and higher SOFA score at admission were associated with the development of severe COVID-19. Additionally, multivariate logistic regression analysis revealed that the higher NLR (OR, 1.238, 95% CI 1.110–1.382, p < 0.001) and D-dimer greater than 1 μg/ml (OR, 16.079, 95%CI, 3.162–81.775, p = 0.001) on admission were the independent risk factors for the development of severe COVID-19 (Table 5).

Table 5 Logistic regression modeling evaluating risk factors for severe COVID-19 in middle-aged (40–59 years) patients without comorbidities

Predictive performance of the NLR, D-dimer and combined index for the development of severe COVID-19

ROC curve analysis was used to analyze the predictive performance of the NLR, D-dimer and combined NLR and D-dimer (Fig. 2). As recent publications demonstrated that SOFA could well predict the severity and outcome of COVID-19, we compared the predictive performance of these risk factors and SOFA for the development of severe COVID-19 in middle-aged patients without underlying disease. The optimal cut-offs and corresponding sensitivity and specificity and AUC were listed in Table 6. The optimal cut-off value of NLR for predicting severe illness was 5.03, which yielded sensitivity and specificity of 88.2% and 66.2%, respectively. The optimal cut-off value of SOFA was 2, which resulted in sensitivity and specificity values of 70.6% and 70.4%, respectively. SOFA and NLR yielded an AUC of 0.750 (95% CI 0.602–0.987) and 0.862 (95% CI 0.751–0.973), respectively. However, there was no significant difference in the AUC between SOFA and NLR (Z = 1.325, p = 0.185). We further combined NLR and D-dimer higher than 1 μg/ml to draw another ROC curve, as shown in Fig. 2, yielding much greater discriminatory capacity for severe illness, with an AUC of 0.916 (95% CI 0.855–0.977). The Delong’s test showed that there was significant difference in the AUC between SOFA and combined index (z = 2.574, p = 0.010). These results demonstrated the prediction effect of the combined index was significantly better than that of SOFA.

Figure. 2
figure 2

ROC curve analysis using the NLR, D-dimer, combined index and SOFA for predicting severe COVID-19 in middle-aged (40–59 years) patients without comorbidities. COVID-19 coronavirus disease 2019, AUC area under the curve, CI confidence interval, NLR neutrophil to lymphocyte ratio, SOFA Sequential Organ Failure Assessment, Combined index combined NLR and D-dimer > 1 μg/ml index

Table 6 Predictive performance of NLR, D-dimer, combined index and SOFA for severe COVID-19 in middle-aged (40–59 years) patients without comorbidities