Background

Rice is the staple food for more than four billion people globally and it is cultivated worldwide across different climatic conditions. Among heavy metals, cadmium (Cd) is recognized as the most toxic heavy metal, and its concentration in arable lands has increased due to excessive use of agro-chemical and anthropogenic activities [1,2,3].

Rice generally has high bioaccumulation for various toxic metals such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), respectively [4, 5]. Dietary intake of plant-derived foods that are rich in toxic metals especially As and Cd poses serious threats to consumers’ health [6]. Rice accounts for ~ 50% of the total Cd intake in people consuming rice as staple food [7]. Therefore, minimization of the transfer of Cd from the environment and/or rhizosphere to other plant parts specifically rice grains is important.

Although, Cd is a non-essential element, it is easily absorbed by plant roots, and competes with other bivalent ions such as Ca, Fe, Mn, and Zn to accumulate in plants [8,9,10], with subsequent phyto-toxic effects. The Cd toxicity in plants often leads to growth inhibition and disruption of physiological processes [11, 12]. Studies showed that Cd inhibits and reduces the germination rate, biomass accumulation, root-shoot ratio, and leaf development in rice [13, 14]. The inhibition in growth and biomass accumulation in rice are linked to the Cd-toxicity related mechanistic changes [15, 16]. Furthermore, Cd accumulation in rice plants can cause oxidative stress due to excess production of reactive oxygen species (ROS), and increased lipid peroxidation in plants [16, 17]. Plants produce enzymatic antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) to protect themselves against oxidative stress induced by heavy toxic metals [17,18,19]. Additionally, hydrolyzing enzymes such as acid phosphatases, proteases, and α-amylases are known to facilitate both seed germination, as well as seedling growth by activating nutrients in the endosperm, however, in presence of heavy metals, starch might be immobilized thus limiting the nutrient sources [20]. Cd toxicity severely inhibits the germination index, vigor index, radicle length, and amylase activities in rice [21], therefore, it is imperative to improve the early growth of rice under Cd toxic conditions.

Recently, nanotechnology has been extensively employed in the field of plant sciences to explore its potential impacts in improving crop yields under metal toxic conditions [22, 23]. Due to high reactivity, large specific surface area, and strong adsorption capacity, nanoparticles (NPs) can adversely affect the transport of co-existing pollutants such as pesticides, heavy metals, and toxic organics [

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Kanu AS, Ashraf U, Mo ZW, Sabir SUR, Baggie I, Charley CS, Tang XR. Calcium amendment improved the performance of fragrant rice and reduced metal uptake under cadmium toxicity. Environ Sci Pollut Res. 2019;26:24748–57. https://doi.org/10.1007/s11356-019-05779-7.

    Article  CAS  Google Scholar 

  2. Rascio N, Dalla VF, La Rocca N, Barbato R, Pagliano C, Raviolo M, Gonnelli C, Gabbrielli R. Metal accumulation and damage in rice cv. Vialone nano seedlings exposed to cadmium. Environ Exp Bot. 2008;62:267–78. https://doi.org/10.1016/j.envexpbot.2007.09.002.

    Article  CAS  Google Scholar 

  3. Roberts TL. Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng. 2014;83:52–9. https://doi.org/10.1016/j.proeng.2014.09.012.

    Article  CAS  Google Scholar 

  4. Ashraf U, Kanu AS, Mo ZW. Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res. 2015;22:18318–32. https://doi.org/10.1007/s11356-015-5463-x.

    Article  CAS  Google Scholar 

  5. Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Bhaduri D, Kumar U, Mohanty S, Panneerselvam P, Chatterjee D, Satapathy BS, Pathak H. Metal (loid)s (As, Hg, Se, Pb and Cd) in paddy soil: bioavailability and potential risk to human health. Sci Total Environ. 2019;699:134330. https://doi.org/10.1016/j.scitotenv.2019.134330.

    Article  CAS  PubMed  Google Scholar 

  6. Clemens S, Ma JF. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol. 2016;67:489–512. https://doi.org/10.1146/annurev-arplant-043015-112301.

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Yamaji N, Ma JF. Molecular mechanism of cadmium accumulation in rice. In: Himeno S, Aoshima K(eds). Cadmium Toxicity. Current Topics in Environmental Health and Preventive Medicine. Singapore: Springer; 2019. https://doi.org/10.1007/978-981-13-3630-0_9.

    Chapter  Google Scholar 

  8. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001;212:475–86. https://doi.org/10.1007/s004250000458.

    Article  CAS  PubMed  Google Scholar 

  9. Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006;88:1707–19. https://doi.org/10.1016/j.biochi.2006.07.003.

    Article  CAS  PubMed  Google Scholar 

  10. Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci. 2008;13:464–73. https://doi.org/10.1016/j.tplants.2008.06.005.

    Article  CAS  PubMed  Google Scholar 

  11. Huang SH, Rao GS, Ashraf U, He LX, Zhang ZZ, Zhang HL, Mo ZW, Pan SG, Tang XR. Application of inorganic passivators reduced Cd contents in brown rice in oilseed rape-rice rotation under Cd contaminated soil. Chemosphere. 2020. https://doi.org/10.1016/j.chemosphere.2020.1274042020.127404.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rao GS, Huang SH, Ashraf U, Mo ZW, Duan MY, Tang XR. Ultrasonic seed treatment improved cadmium (Cd) tolerance in Brassica napus L. Ecotoxicol Environ Saf. 2019;185:109659. https://doi.org/10.1016/j.ecoenv.2019.109659.

    Article  CAS  PubMed  Google Scholar 

  13. Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH. Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. Comptes Rendus Biol. 2007;330:735–46. https://doi.org/10.1016/j.crvi.2007.08.001.

    Article  CAS  Google Scholar 

  14. Song WE, Chen SB, Liu JF, Li C, Song NN, Ning LI, Bin L. Variation of Cd concentration in various rice vs and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Integr Agric. 2015;14:1845–54. https://doi.org/10.1016/S2095-3119(14)60926-6.

    Article  CAS  Google Scholar 

  15. Lee HJ, Abdula SE, Jang DW, Park SH, Yoon UH, Jung YJ, Kang KK, Nou IS, Cho YG. Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant Cell Rep. 2013;32:1521–9. https://doi.org/10.1007/s00299-013-1464-8.

    Article  CAS  PubMed  Google Scholar 

  16. Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma. 2014;251:1047–65. https://doi.org/10.1007/s00709-014-0614-3.

    Article  CAS  PubMed  Google Scholar 

  17. Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B. Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.). Int J Phytoremediation. 2013;15:513–21. https://doi.org/10.1080/15226514.2012.702807.

    Article  CAS  PubMed  Google Scholar 

  18. Ashraf U, Tang XR. Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere. 2017;176:141–55. https://doi.org/10.1016/j.chemosphere.2017.02.103.

    Article  CAS  PubMed  Google Scholar 

  19. Ashraf U, Hussain S, Akbar N, Anjum SA, Hassan W, Tang XR. Water management regimes alter Pb uptake and translocation in fragrant rice. Ecotoxicol Environ Saf. 2018;149:128–34. https://doi.org/10.1016/j.ecoenv.2017.11.033.

    Article  CAS  PubMed  Google Scholar 

  20. Seneviratne M, Rajakaruna N, Rizwan M, Madawala HMSP, Vithanage M. Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environ Geochem Health. 2019;41:1813–31. https://doi.org/10.1007/s10653-017-0040-5.

    Article  CAS  PubMed  Google Scholar 

  21. He JY, Ren YF, Cheng Z, Jiang DA. Effects of cadmium stress on seed germination, seedling growth and seed amylase activities in rice (Oryza sativa). Rice Sci. 2008;15:319–25. https://doi.org/10.1016/S1672-6308(09)60010-X.

    Article  Google Scholar 

  22. Abbas T, Rizwan M, Ali S, Zia-ur-Rehman M, Qayyum MF, Abbas F, Hannan F, Rinklebe J. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol Environ Saf. 2017;140:37–47. https://doi.org/10.1016/j.ecoenv.2017.02.028.

    Article  CAS  PubMed  Google Scholar 

  23. Hussain A, Ali S, Rizwan M, Zur Rehman M, Qayyum MF, Wang H, Rinklebe J. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf. 2019;173:156–64. https://doi.org/10.1016/j.ecoenv.2019.01.118.

    Article  CAS  PubMed  Google Scholar 

  24. Deng Y, Eitzer B, White JC, **ng B. Impact of multiwall carbon nanotubes on the accumulation and distribution of carbamazepine in collard greens (Brassica oleracea). Environ Sci Nano. 2017;4:149–59. https://doi.org/10.1039/c6en00419a.

    Article  CAS  Google Scholar 

  25. Glomstad B, Altin D, Sørensen L, Liu J, Jenssen BM, Booth AM. Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environ Sci Technol. 2016;50:2660–8. https://doi.org/10.1021/acs.est.5b05177.

    Article  CAS  PubMed  Google Scholar 

  26. Yang K, **ng BS. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application. Chem Rev. 2010;110:5989–6008. https://doi.org/10.1021/cr100059s.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Long J, Li J, Zhang M, **ao G, Ye X, Zeng H. Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice (Oryza sativa L.). Environ Sci Pollut Res. 2019;26:23119–28. https://doi.org/10.1007/s11356-019-05551-x.

    Article  CAS  Google Scholar 

  28. Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Rehman MZU, Waris AA. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–77. https://doi.org/10.1016/j.chemosphere.2018.09.120.

    Article  CAS  PubMed  Google Scholar 

  29. Singh A, Prasad SM, Singh S. Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environ Nanotechnol Monit Manag. 2018;9:42–9. https://doi.org/10.1016/j.enmm.2017.11.006.

    Article  Google Scholar 

  30. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M. Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem. 2017;5:78. https://doi.org/10.3389/fchem.2017.00078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ Pollut. 2013;172:76–85. https://doi.org/10.1016/j.envpol.2012.08.011.

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Dou R, Yang Z, You T, Gao X, Wang L. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiol Biochem. 2018;130:604–12. https://doi.org/10.1016/j.plaphy.2018.08.019.

    Article  CAS  PubMed  Google Scholar 

  33. Lin D, **ng B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. 2008;42:5580–5. https://doi.org/10.1021/es800422x.

    Article  CAS  PubMed  Google Scholar 

  34. Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehmand M, Farid M, Abbas F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater. 2017;322:2–16. https://doi.org/10.1016/j.jhazmat.2016.05.061.

    Article  CAS  PubMed  Google Scholar 

  35. Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep. 2017;7:1–21. https://doi.org/10.1038/s41598-017-08669-5.

    Article  CAS  Google Scholar 

  36. Huang Z, **e W, Wang M, Liu X, Ashraf U, Qin D, Zhuang M, Li W, Wang S, Tian H, Mo Z. Response of rice genotypes with differential nitrate reductase-dependent NO synthesis to melatonin under ZnO nanoparticles’(NPs) stress. Chemosphere. 2020;250:126337. https://doi.org/10.1016/j.chemosphere.2020.126337.

    Article  CAS  PubMed  Google Scholar 

  37. Yang B, He JY, Ren YF, Wang YF, Tian D. Alleviating effect of hydrogen periode on seed germination of rice under cadmium stress. Plant Physiol J. 2018;54:1111–8. https://doi.org/10.13592/j.cnki.ppj.2017.0553.

    Article  Google Scholar 

  38. Zheng X, Wu R, Chen Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environ Sci Technol. 2011;45:2826–32. https://doi.org/10.1021/es2000744.

    Article  CAS  PubMed  Google Scholar 

  39. Prom-u-thai C, Rerkasem B, Yazici A, Cakmak I. Zinc priming promotes seed germination and seedling vigor of rice. J Plant Nutr Soil Sci. 2012;175:482–8. https://doi.org/10.1002/jpln.201100332.

    Article  CAS  Google Scholar 

  40. Ng LC, Sariah M, Sariam O, Radziah O, Zainal Abidin MA. Rice seed bacterization for promoting germination and seedling growth under aerobic cultivation system [online]. Aust J Crop Sci. Feb 2012;6(1):170–5.

    CAS  Google Scholar 

  41. Li S, Jiang H, Wang J, Wang Y, Pan SG, Tian H, Duan MY, Wang SL, Tang XR, Mo ZW. Responses of plant growth, physiological, gas exchange parameters of super and non-super rice to rhizosphere temperature at the tillering stage. Sci Rep. 2019;9:1–17. https://doi.org/10.1038/s41598-019-47031-9.

    Article  CAS  Google Scholar 

  42. Zou Q. Guidance on plant physiology experiment. Bei**g: China Agricultural Press; 2000.

    Google Scholar 

  43. Erk M, Ivanković D, Raspor B, Pavičić J. Evaluation of different purification procedures for the electrochemical quantification of mussel metallothioneins. Talanta. 2002;57:1211–8. https://doi.org/10.1016/S0039-9140(02)00239-4.

    Article  CAS  PubMed  Google Scholar 

  44. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.

    Article  CAS  Google Scholar 

  45. Kägi JH. Overview of metallothionein. Methods Enzymol. 1991;205:613–26.

    Article  Google Scholar 

  46. Arnon DT. Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1e15. https://doi.org/10.1104/pp.24.1.1.

    Article  Google Scholar 

  47. Sheteiwy M, Guan YJ, Cao DD, Li J, Nawaz A, Hu QJ, Hu WM, Ning MY, Hu J. Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep. 2015;5:14278. https://doi.org/10.1038/srep14278.

    Article  CAS  Google Scholar 

  48. **a J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37:W652–60. . (WebServer).

    Article  CAS  Google Scholar 

  49. Lian JP, Wu JN, **ong HX, Zeb A, Yang TZ, Su XM, Su LJ, Liu WT. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J Hazard Mater. 2020;285:121620. https://doi.org/10.1016/j.jhazmat.2019.121620.

    Article  CAS  Google Scholar 

  50. Lin CC, Kao CH. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul. 2000;30:151–5. https://doi.org/10.1023/A:1006345126589.

    Article  CAS  Google Scholar 

  51. Shah K, Kumar RG, Verma S, Dubey RS. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 2001;161:1135–44. https://doi.org/10.1016/S0168-9452(01)00517-9.

    Article  CAS  Google Scholar 

  52. Lin R, Wang X, Luo Y, Du W, Guo H, Yin D. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere. 2007;69:89–98. https://doi.org/10.1016/j.chemosphere.2007.04.041.

    Article  CAS  PubMed  Google Scholar 

  53. Roychoudhury A, Basu S, Sengupta DN. Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant. 2012;34:835–47. https://doi.org/10.1007/s11738-011-0881-y.

    Article  CAS  Google Scholar 

  54. Dai X, Gong M. The function of plant metallothioneins in plant resistance. J Ningxia Teachers Univ. 2011;32:47–51. https://doi.org/10.3969/j.issn.1674-1331.2011.03.012.

    Article  Google Scholar 

  55. Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot. 2002;53:1–11. https://doi.org/10.1093/jexbot/53.366.1.

    Article  CAS  PubMed  Google Scholar 

  56. Cai YM, Xu WB, Wang ME, Chen WP, Li XZ, Li Y, Cai YH. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake. Environ Pollut. 2019;253:959–65. https://doi.org/10.1016/j.envpol.2019.07.077.

    Article  CAS  PubMed  Google Scholar 

  57. Thomas V. Phenylpropanoid biosynthesis. Mol Plant. 2020;3:2–20. https://doi.org/10.1093/mp/ssp106.

    Article  CAS  Google Scholar 

  58. Liu L, Lin L. Effect of heat stress on sargassum fusiforme leaf metabolome. J Plant Biol. 2020. https://doi.org/10.1007/s12374-020-09247-5.

    Article  Google Scholar 

  59. Hong LW, Ye CT, Lin JC, Fu HH, Wu XH, Li QSQ. Alternative polyadenylation is involved in auxin-based plant growth and development. Plant J. 2018;93:246–58. https://doi.org/10.1111/tpj.13771.

    Article  CAS  PubMed  Google Scholar 

  60. Farooq MA, Islam F, Yang C, Nawaz A, Athar HR, Gill RA, Ali B, Song WJ, Zhou WJ. Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate-glutathione cycle in oilseed rape roots. Plant Growth Regul. 2017;84:135–48. https://doi.org/10.1007/s10725-017-0327-7.

    Article  CAS  Google Scholar 

  61. Navarroreig M, Jaumot J, Pina B, Moyano E, Galceran TM, Tauler R. Metabolomic analysis of the effects of cadmium and copper treatment in Oryza sativa L. using untargeted liquid chromatography coupled to high resolution mass spectrometry and all-ion fragmentation. Metallomics. 2017;9:660–75. https://doi.org/10.1039/c6mt00279j.

    Article  CAS  Google Scholar 

  62. Wu XX, He J, Ding HD, Zhu ZW, Chen JL, Xu X, Zha DS. Modulation of zinc-induced oxidative damage in Solanum melongena, by 6-benzylaminopurine involves ascorbate–glutathione cycle metabolism. Environ Exp Bot. 2015;116:1–11. https://doi.org/10.1016/j.envexpbot.2015.03.004.

    Article  CAS  Google Scholar 

  63. Chen JL, Wu XX, Yao XF, Zhu ZW, Xu S, Zha DS. Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Braz J Bot. 2016;39:409–16. https://doi.org/10.1007/s40415-015-0241-z.

    Article  Google Scholar 

  64. Mwamba TM, Islam F, Ali B, Lwalaba JL, Gill RA, Zhang F, Farooq MA, Ali S, lhassan ZU, Huang Q, Zhou W, Wang J. Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. Chemosphere. 2020;250:126308. https://doi.org/10.1016/j.chemosphere.2020.126308.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding provided by National Natural Science Foundation of China (31601244) and Guangzhou Agricultural Science and Technology Commissioner Project (GZKTP201815). We would like to thank TopEdit (www.topeditsci.com) for English language editing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YL: data curation, writing-original draft preparation. LL: writing-original draft preparation. WL: methodology, writing-reviewing and editing, supervision. UA, LM, SP, HT: writing-reviewing and editing. XT: writing-reviewing and editing, supervision. ZM: conceptualization, writing-reviewing and editing, funding acquisition, supervision.

Corresponding authors

Correspondence to **angru Tang or Zhaowen Mo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors consent to publish.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: Figure S1.

The change of pH and Zn2+ in the ZnO NPs solutions and the Zn concentration in the seed after priming. pH in the ZnO NPs solutions (A), Zn2+ in the ZnO NPs solutions (B), and the Zn concentration in the seed after priming (C). ZnO NPs 0, ZnO NPs 25, ZnO NPs 50 and ZnO NPs 100: 0 mg L− 1, 25 mg L− 1, 50 mg L− 1 and 100 mg L− 1 of ZnO NPs. Cd 0 and Cd 100: 0 mg L− 1 and 100 mg L− 1. Values were represented as mean ± SD (n = 4). Different low case letters among the treatments within a variety shows the statistically significant at p < 0.05 according to least significant different test.Figure S2. The chlorophyll and carotenoids content in shoot. The chlorophyll a content in shoot. (A), the chlorophyll b content in shoot. (B), the total chlorophyll content in shoot (C), and the carotenoids content in shoot (D). ZnO NPs 0, ZnO NPs 25, ZnO NPs 50 and ZnO NPs 100: 0 mg L− 1, 25 mg L− 1, 50 mg L− 1 and 100 mg L− 1 of ZnO NPs. Cd 0 and Cd 100: 0 mg L− 1 and 100 mg L− 1. Values were represented as mean ± SD (n = 4). Different low case letters among the treatments within a variety shows the statistically significant at p < 0.05 according to least significant different test. Figure S3. TEM images of the rice roots and shoot in germinated seedlings. Red arrows nanoparticles.Figure S4. Analysis of the metabolic profiles in shoot of rice seedling. Principal component analysis (PCA) of metabolic profiles in shoot of rice seedling of **angyaxiangzhan and Yuxiangyouzhan under control and treatments (A). The Identified total significant different metabolites and up- and down-regulated metabolites (B). The Venn diagram of the significant different metabolites among the treatments (C). KEGG enrichment analyses of the identified significant different metabolites (D) and ranking of the identified significant differential metabolites (E) in **angyaxiangzhan and Yuxiangyouzhan under different treatments. X_A: ZnO NPs 0 + Cd 0 for **angyaxiangzhan, X_B: ZnO NPs 0 + Cd 100 for **angyaxiangzhan, X_C: ZnO NPs 50 + Cd 0 for **angyaxiangzhan, X_D: ZnO NPs 50 + Cd 100 for **angyaxiangzhan; Y_A: ZnO NPs 0 + Cd 0 for Yuxiangyouzhan, Y_B: ZnO NPs 0 + Cd 100 for Yuxiangyouzhan, Y_C: ZnO NPs 50 + Cd 0 for Yuxiangyouzhan, Y_D: ZnO NPs 50 + Cd 100 for Yuxiangyouzhan. The abscissa indicates that the rich factor, ordinate corresponding to each pathway is the path name, and the color of the point is p-value, the redder the enrichment is more significant. The size of the points represents the number of enriched differential metabolites.Figure S5. Metabolic pathways network.

Additional file 2: Table S1.

ANOVA analysis of the growth and physiological parameters.

Additional file 3:Table S2.

Metabolites detected in the rice varieties.

Additional file 4:Table S3.

The identified significant different metabolites in **angyaxiangzhan and Yuxiangyouzhan under different treatments.

Additional file 5:Table S4.

Fold change of the detected metabolites involved in the metabolic pathways.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liang, L., Li, W. et al. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J Nanobiotechnol 19, 75 (2021). https://doi.org/10.1186/s12951-021-00820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12951-021-00820-9

Keywords