Background

Esophageal cancer (EC), one of the most lethal cancers, is the seventh common cancer type and the sixth leading cause of cancer-related death in the world [1]. In China, there will be approximately 346,600 people newly diagnosed and 323,600 people dying from EC in 2022 [

Availability of data and materials

Raw data can be accessed form GSE213565.

Abbreviations

ESCC:

Esophageal squamous cell carcinoma

Early ESCC:

Early Esophageal squamous cell carcinoma

WES:

Whole-exome sequencing

TMB:

Tumor mutational burden

MSI:

Microsatellite instability

CNV:

Copy number variation

GRN:

Gene regulation network

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. **a C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–90. https://doi.org/10.1097/CM9.0000000000002108.

    Article  PubMed  Google Scholar 

  3. . Adato O, Orenstein Y, Kopolovic J, Juven-Gershon T, Unger R. Quantitative Analysis of Differential Expression of HOX Genes in Multiple Cancers. Cancers (Basel). 2020;12(6) https://doi.org/10.3390/cancers12061572

  4. Rubenstein JH, Shaheen NJ. Epidemiology, Diagnosis, and Management of Esophageal Adenocarcinoma. Gastroenterology. 2015;149(2):302-17 e1. https://doi.org/10.1053/j.gastro.2015.04.053.

    Article  PubMed  Google Scholar 

  5. Wang GQ, Abnet CC, Shen Q, Lewin KJ, Sun XD, Roth MJ, et al. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population. Gut. 2005;54(2):187–92. https://doi.org/10.1136/gut.2004.046631.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wei WQ, Chen ZF, He YT, Feng H, Hou J, Lin DM, et al. Long-Term Follow-Up of a Community Assignment, One-Time Endoscopic Screening Study of Esophageal Cancer in China. J Clin Oncol. 2015;33(17):1951–7. https://doi.org/10.1200/JCO.2014.58.0423.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lin DC, Wang MR, Koeffler HP. Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Implications for Patients. Gastroenterology. 2018;154(2):374–89. https://doi.org/10.1053/j.gastro.2017.06.066.

    Article  PubMed  Google Scholar 

  8. Song Y, Li L, Ou Y, Gao Z, Li E, Li X, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509(7498):91–5. https://doi.org/10.1038/nature13176.

    Article  CAS  PubMed  Google Scholar 

  9. Abnet CC, Arnold M, Wei WQ. Epidemiology of Esophageal Squamous Cell Carcinoma. Gastroenterology. 2018;154(2):360–73. https://doi.org/10.1053/j.gastro.2017.08.023.

    Article  PubMed  Google Scholar 

  10. Li M, Zhang Z, Wang Q, Yi Y, Li B. Integrated cohort of esophageal squamous cell cancer reveals genomic features underlying clinical characteristics. Nat Commun. 2022;13(1):5268. https://doi.org/10.1038/s41467-022-32962-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Repana D, Nulsen J, Dressler L, Bortolomeazzi M, Venkata SK, Tourna A, et al. The Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 2019;20(1):1. https://doi.org/10.1186/s13059-018-1612-0.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56. https://doi.org/10.1101/gr.239244.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol. 2016;12(4):e1004873. https://doi.org/10.1371/journal.pcbi.1004873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41. https://doi.org/10.1186/gb-2011-12-4-r41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article  CAS  PubMed  Google Scholar 

  17. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30. https://doi.org/10.1093/bioinformatics/btt656.

    Article  CAS  PubMed  Google Scholar 

  18. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–92. https://doi.org/10.1093/nar/gkac963.

    Article  CAS  PubMed  Google Scholar 

  19. . Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022https://doi.org/10.1093/nar/gkac194

  20. . Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9) https://doi.org/10.1371/journal.pone.0012776

  21. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220. https://doi.org/10.1186/s13059-017-1349-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang SY, Kim DG, Ahn S, Ha SY, Jang KT, Kim KM. Comparative analysis of microsatellite instability by next-generation sequencing, MSI PCR and MMR immunohistochemistry in 1942 solid cancers. Pathol Res Pract. 2022;233:153874. https://doi.org/10.1016/j.prp.2022.153874.

    Article  CAS  PubMed  Google Scholar 

  23. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45(9):970–6. https://doi.org/10.1038/ng.2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cooper DN, Mort M, Stenson PD, Ball EV, Chuzhanova NA. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum Genomics. 2010;4(6):406–10. https://doi.org/10.1186/1479-7364-4-6-406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci. 2021;264:118729. https://doi.org/10.1016/j.lfs.2020.118729.

    Article  CAS  PubMed  Google Scholar 

  26. Cancer Genome Atlas Research N, Analysis Working Group: Asan U, Agency BCC, Brigham, Women’s H, Broad I, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169–75. https://doi.org/10.1038/nature20805.

    Article  CAS  Google Scholar 

  27. Suo D, Wang Z, Li L, Chen Q, Zeng T, Liu R, et al. HOXC10 upregulation confers resistance to chemoradiotherapy in ESCC tumor cells and predicts poor prognosis. Oncogene. 2020;39(32):5441–54. https://doi.org/10.1038/s41388-020-1375-4.

    Article  CAS  PubMed  Google Scholar 

  28. Yin J, Guo Y. HOXD13 promotes the malignant progression of colon cancer by upregulating PTPRN2. Cancer Med. 2021;10(16):5524–33. https://doi.org/10.1002/cam4.4078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. . Amendola PG, Reuten R, Erler JT. Interplay Between LOX Enzymes and Integrins in the Tumor Microenvironment. Cancers (Basel). 2019;11(5) https://doi.org/10.3390/cancers11050729

  30. Pez F, Dayan F, Durivault J, Kaniewski B, Aimond G, Le Provost GS, et al. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res. 2011;71(5):1647–57. https://doi.org/10.1158/0008-5472.CAN-10-1516.

    Article  CAS  PubMed  Google Scholar 

  31. Goodman FR, Bacchelli C, Brady AF, Brueton LA, Fryns JP, Mortlock DP, et al. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet. 2000;67(1):197–202. https://doi.org/10.1086/302961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jorgensen EM, Ruman JI, Doherty L, Taylor HS. A novel mutation of HOXA13 in a family with hand-foot-genital syndrome and the role of polyalanine expansions in the spectrum of Mullerian fusion anomalies. Fertil Steril. 2010;94(4):1235–8. https://doi.org/10.1016/j.fertnstert.2009.05.057.

    Article  CAS  PubMed  Google Scholar 

  33. Hung YC, Ueda M, Terai Y, Kumagai K, Ueki K, Kanda K, et al. Homeobox gene expression and mutation in cervical carcinoma cells. Cancer Sci. 2003;94(5):437–41. https://doi.org/10.1111/j.1349-7006.2003.tb01461.x.

    Article  CAS  PubMed  Google Scholar 

  34. Leonard WJ, Lin JX, O’Shea JJ. The gammac Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity. 2019;50(4):832–50. https://doi.org/10.1016/j.immuni.2019.03.028.

    Article  CAS  PubMed  Google Scholar 

  35. . Rizzo A, Ricci AD, Brandi G. PD-L1, TMB, MSI, and Other Predictors of Response to Immune Checkpoint Inhibitors in Biliary Tract Cancer. Cancers (Basel). 2021;13(3) https://doi.org/10.3390/cancers13030558

  36. Liu X, Zhang M, Ying S, Zhang C, Lin R, Zheng J, et al. Genetic Alterations in Esophageal Tissues From Squamous Dysplasia to Carcinoma. Gastroenterology. 2017;153(1):166–77. https://doi.org/10.1053/j.gastro.2017.03.033.

    Article  CAS  PubMed  Google Scholar 

  37. Farshidfar F, Rhrissorrakrai K, Levovitz C, Peng C, Knight J, Bacchiocchi A, et al. Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis. Nat Commun. 2022;13(1):898. https://doi.org/10.1038/s41467-022-28566-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang M, Liu ZZ, Aoshima K, Cai WL, Sun H, Xu T, et al. CECR2 drives breast cancer metastasis by promoting NF-kappaB signaling and macrophage-mediated immune suppression. Sci Transl Med. 2022;14(630):eabf5473. https://doi.org/10.1126/scitranslmed.abf5473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10(5):361–71. https://doi.org/10.1038/nrc2826.

    Article  CAS  PubMed  Google Scholar 

  40. Lv J, Cao XF, Ji L, Zhu B, Wang DD, Tao L, et al. Association of beta-catenin, Wnt1, Smad4, Hoxa9, and Bmi-1 with the prognosis of esophageal squamous cell carcinoma. Med Oncol. 2012;29(1):151–60. https://doi.org/10.1007/s12032-010-9816-5.

    Article  CAS  PubMed  Google Scholar 

  41. Xu C, Li B, Zhao S, ** B, Jia R, Ge J, et al. MicroRNA-186-5p Inhibits Proliferation And Metastasis Of Esophageal Cancer By Mediating HOXA9. Onco Targets Ther. 2019;12:8905–14. https://doi.org/10.2147/OTT.S227920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen KN, Gu ZD, Ke Y, Li JY, Shi XT, Xu GW. Expression of 11 HOX genes is deregulated in esophageal squamous cell carcinoma. Clin Cancer Res. 2005;11(3):1044–9 (https://www.ncbi.nlm.nih.gov/pubmed/15709170).

    Article  CAS  PubMed  Google Scholar 

  43. Tang L, Cao Y, Song X, Wang X, Li Y, Yu M, et al. HOXC6 promotes migration, invasion and proliferation of esophageal squamous cell carcinoma cells via modulating expression of genes involved in malignant phenotypes. PeerJ. 2019;7:e6607. https://doi.org/10.7717/peerj.6607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang E, Han L, Yin D, He X, Hong L, Si X, et al. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res. 2017;45(6):3086–101. https://doi.org/10.1093/nar/gkw1247.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Peng L, Luo Y, Zhang S, Pu Y, Chen Y, et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat Commun. 2021;12(1):5291. https://doi.org/10.1038/s41467-021-25539-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang J, Wang H, Wu H, Qiang G. The Functionalities and Clinical Significance of Tumor-Infiltrating Immune Cells in Esophageal Squamous Cell Carcinoma. Biomed Res Int. 2021;2021:8635381. https://doi.org/10.1155/2021/8635381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan J, Weng Z, Tan Z, Luo K, Zhong J, **e X, et al. Th1-involved immune infiltrates improve neoadjuvant chemoradiotherapy response of esophageal squamous cell carcinoma. Cancer Lett. 2023;553:215959. https://doi.org/10.1016/j.canlet.2022.215959.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was funded by the Natural Science Foundation of Fujian Province of China, grant number 2019J01170 and the Natural Science Foundation of Gansu Province of China, grant number 21JR1RA021.

Author information

Authors

Contributions

Cai** Li, Jianjun Wang, Zhixiang Hu and Shenglin Huang designed the study; Cai** Li collected the data and clinical information; **g**g Zhao, Hena Zhang performed the bioinformatics analysis; Qiaojuan Li conducted the experiments; **g**g Zhao, **ya Jia and Zhixiang Hu wrote and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhixiang Hu or Cai** Li.

Ethics declarations

Ethics approval and consent to participate

The study was implemented in accordance with Declaration of Helsinki and relevant guidelines by the institutional ethics committee. The study was approved by Ethics Committee of Second Affiliated Hospital of Fujian Medical University (Approval-Number: 2020-246, 2020-05-22). All methods were carried out in accordance with relevant guidelines and regulations under the ethical approval. All patients gave their informed consents.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1:

 Figure S1. The 8p11.23 amplification impacted the transcriptome.

Additional file 2:

 Table S1. A summary of variations of early ESCC by WES.

Additional file 3:

 Table S2. The DEGs between tumor and normal.

Additional file 4:

 TableS3. Clinical data of the patients in this study. Table S4. TCGA samples used in the study. Table S5. Primers and RNA sequences used in this study.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Jia, X., Li, Q. et al. Genomic and transcriptional characterization of early esophageal squamous cell carcinoma. BMC Med Genomics 16, 153 (2023). https://doi.org/10.1186/s12920-023-01588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12920-023-01588-7

Keywords