Introduction

It is critical to have a high degree of tolerance to chemotherapy treatments. As a result of the development of breakthrough immunomodulatory antibody therapies that depend on the patient's immune system to manage malignancies in recent years, the issue of immunosenescence has risen to prominence on the medical agenda, prompting a flurry of new research and discussion [1,2,3]. The discovery of immune checkpoint inhibitors, which target the programmed cell death 1(PD-1), programmed cell death ligand (PDL1), and cytotoxic T lymphocyte antigen 4 pathways, has resulted in the development of new cancer therapies [4, 5]. This method, which involves targeting the immune system, has shown remarkable efficacy in the treatment of many cancers, and several medications have been licensed by health authorities and are now in clinical trials [11, 18]. The majority of the results of aged and MM patients, whether in a localized or remote location and in the ICI and non-ICI eras, are still controversial [19, 20]. However, almost the older MM patients exhibit more adverse and poorer prognosis than younger patients [21,22,23,24,25]. Overall, our cohort study reported that older people experience a worse prognosis than younger patients. We reported a significant novel, unique risk score for genes that was applied from the recent ICI genes database, CKTTD. This score will help with prediction and risk identification for MM patients. The aging effect was clear in this cohort in general and was significantly worse for the adults than for the non-adults. Further, we looked at the risk genes, correlated them with aging, and found that oncosupressor genes that are less common in older MM patients than in younger MM patients.

In addition to CSF1, TLR8, TLR4, and NOX4, TNFRSF4 was the most significantly associated and adversely correlated with age in both TCGA and GEO with aging. This risk score signature may play an essential role in the future as targeted ICI genes increase its expression for adult people in the immunotherapy era. The literature is fairly reported for this new gene about TNFRSF4 and its clinical efficacy and /or associated immune cells. In leukemic stem cells, stimulation of TNFRSF4-signaling did not deplete Tregs but impaired the potential of Tregs to protect LSCs from CD8 + CTL-mediated death. In the bone marrow of newly diagnosed chronic myeloid leukemia patients, TNFRSF4 mRNA levels were dramatically raised and linked with the expression of the Treg-restricted transcription factor FOXP3 [26]. Survival and TNFRSF4 expression with different immune cells were investigated in our study. The survival prediction of TNFRSF4 and associated age was significantly presented as a novel prognostic model. In the experiments, we tested TNFRSF4proten expression in 14 patients and investigated the score of the expression, which revealed a significant increase in the younger group of patients (< 65) compared to the older group. The patients' data, on the other hand, were small, but the significant difference was clear. Finally, our research identifies specific genes and gene pathways that may be responsible for the aging-related decrease in life expectancy. Also, we think about what might be behind these changes and what might be interesting research subjects for future studies on older people.

It is necessary to consider the limitations of this investigation. Firstly, owing to the study's retrospective character, it was difficult to rule out confounding variables that may have influenced the patients' prognosis in the future. Secondly, we only selected target data from TCGA and GEO public databases through biological algorithm approaches. Thirdly, though the experimental work validation was reported, further investigation needed to be done by different methods. Moreover, it is relatively weak to consider only mRNA expression and protein expression because many more complicated mechanisms contribute to MM. Finally, further functional research is needed to find out how prognostic genes in MM work together and how they affect both prognosis and treatment.

In summary, this study aimed to determine the predictive value of a novel ICI gene-related risk score derived from a new ICI gene list in melanoma patients. Additionally, we identified a novel ICI gene (TNFRSF4), a tumor suppressor gene associated with age-related survival inequalities related to immune cell infiltration, which may be related to the development of aggressive behavior and carcinogenesis in adult patients. To identify potential therapeutic targets, extensive research and large cohort data are required to understand how the gene's products function as well as how melanoma patients react as they get older.