Log in

Critical behavior around the fixed points driven by fermion–fermion interactions and disorders in the nodal-line superconductors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We systematically investigate the intricate interplay between short-range fermion-fermion interactions and disorder scatterings beneath the superconducting dome of noncentrosymmetric nodal-line superconductors. Employing the renormalization group that unbiasedly treats all kinds of potential degrees of freedom, we establish energy-dependent coupled flows for all associated interaction parameters. Decoding the low-energy information from these coupled evolutions leads to the emergence of several intriguing behavior in the low-energy regime. At first, we identify eight distinct types of fixed points, which are determined by the competition of all interaction parameters and dictate the low-energy properties. Next, we carefully examine and unveil distinct fates of physical implications as approaching such fixed points. The density of states of quasiparticles displays a linear dependence on frequency around the first fixed point, while other fixed points present diverse frequency-dependent behavior. Compressibility and specific heat exhibit unique trends around different fixed points, with the emergence of non-Fermi-liquid behavior nearby the fifth fixed point. Furthermore, after evaluating the susceptibilities of the potential states, we find that a certain phase transition below the critical temperature can be induced when the system approaches the fifth fixed point, transitioning from the nodal-line superconducting state to another superconducting state. This research would enhance our understanding of the unique behavior in the low-energy regime of nodal-line superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Data Availability Statement

No data associated in the manuscript. The manuscript has associated data in a data epository.

References

  1. M. Tinkham, Introduction to Superconductivity Dover Books on Physics Series. (Dover Publications, New York, 1996)

    Google Scholar 

  2. P.W. Anderson, The Theory of Superconductivity in the High-Tc Cuprate Superconductors (Princeton University Press, Princeton, 1997)

    Google Scholar 

  3. A. Larkin, A. Varlamov, Theory of Fluctuations in Superconductors (Oxford University Press, New York, 2005)

    Book  Google Scholar 

  4. J. Barnzzn, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  5. P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  6. H. Ding, T. Yokoya, J. Campuzano, T.T. Takahashi, M. Randeria, M. Norman, T. Mochiku, J. Giapintzakis, Nature (London) 382, 51 (1996)

    Article  ADS  Google Scholar 

  7. A.G. Loeser, Z.-X. Shen, D. Desau, D. Marshall, C. Park, P. Fournier, A. Kapitulnik, Science 273, 325 (1996)

    Article  ADS  Google Scholar 

  8. T. Valla, A. Fedorov, P. Johnson, B. Wells, S. Hulbert, Q. Li, G. Gu, N. Koshizuka, Science 285, 2110 (1999)

    Article  Google Scholar 

  9. T. Yoshida, X.J. Zhou, T. Sasagawa, W.L. Yang, P.V. Bogdanov, A. Lanzara, Z. Hussain, T. Mizokawa, A. Fujimori, H. Eisaki, Z.-X. Shen, T. Kakeshita, S. Uchida, Phys. Rev. Lett. 91, 027001 (2003)

    Article  ADS  Google Scholar 

  10. F. Ronning, T. Sasagawa, Y. Kohsaka, K.M. Shen, A. Damascelli, C. Kim, T. Yoshida, N.P. Armitage, D.H. Lu, D.L. Feng, L.L. Miller, H. Takagi, Z.-X. Shen, Phys. Rev. B 67, 165101 (2003)

    Article  ADS  Google Scholar 

  11. I. Bonalde, W. Bramer-Escamilla, E. Bauer, Phys. Rev. Lett. 94, 207002 (2005)

    Article  ADS  Google Scholar 

  12. K. Izawa, Y. Kasahara, Y. Matsuda, K. Behnia, T. Yasuda, R. Settai, Y. Onuki, Phys. Rev. Lett. 94, 197002 (2005)

    Article  ADS  Google Scholar 

  13. N. Tateiwa, Y. Haga, T.D. Matsuda, S. Ikeda, T. Yasuda, T. Takeuchi, R. Settai, Y. Onuki, J. Phys. Soc. Jpn. 74, 1903 (2005)

    Article  ADS  Google Scholar 

  14. J.-P. Reid, M. Tanatar, X. Luo, H. Shakeripour, N. Doiron-Leyraud, N. Ni, S. Budko, P. Canfield, R. Prozorov, L. Taillefer, Phys. Rev. B 82, 064501 (2010)

    Article  ADS  Google Scholar 

  15. M. Tanatar, J.-P. Reid, H. Shakeripour, X. Luo, N. Doiron-Leyraud, N. Ni, S. BudKo, P. Canfield, R. Prozorov, L. Taillefer, Phys. Rev. Lett. 104, 067002 (2010)

    Article  ADS  Google Scholar 

  16. C.-L. Song, Y.-L. Wang, P. Cheng, Y.-P. Jiang, W. Li, T. Zhang, Z. Li, K. He, L. Wang, J.-F. Jia, H.-H. Hung, C.-J. Wu, X. Ma, X. Chen, Q.-K. Xue, Science 332, 1410 (2011)

    Article  ADS  Google Scholar 

  17. T. Watashige, Y. Tsutsumi, T. Hanaguri, Y. Kohsaka, S. Kasahara, A. Furusaki, M. Sigrist, C. Meingast, T. Wolf, H.V. Lohneysen, T. Shibauchi, Y. Matsuda, Phys. Rev. X 5, 031022 (2015)

    Google Scholar 

  18. J.-P. Reid, M. Tanatar, X. Luo, H. Shakeripour, S.R. deCotret, N. Doiron-Leyraud, J. Chang, B. Shen, H.-H. Wen, H. Kim, R. Prozorov, N. Doiron-Leyraud, L. Taillefer, Phys. Rev. B 93, 214519 (2016)

    Article  ADS  Google Scholar 

  19. E. Slooten, T. Naka, A. Gasparini, Y. Huang, A. De, Visser. Phys. Rev. Lett. 103, 097003 (2009)

    Article  ADS  Google Scholar 

  20. A. Gasparini, Y. Huang, N. Huy, J. Klaasse, T. Naka, E. Slooten, A. De, Visser. J. Low Temp. Phys. 161, 134 (2010)

    Article  ADS  Google Scholar 

  21. K. Sun, H. Yao, E. Fradkin, S.A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009)

    Article  ADS  Google Scholar 

  22. V. Cvetkovic, R.E. Throckmorton, O. Vafek, Phys. Rev. B 86, 075467 (2012)

    Article  ADS  Google Scholar 

  23. J.M. Murray, O. Vafek, Phys. Rev. B 89, 201110(R) (2014)

    Article  ADS  Google Scholar 

  24. B. Dora, I.F. Herbut, R. Moessner, Phys. Rev. B 90, 045310 (2014)

    Article  ADS  Google Scholar 

  25. I.F. Herbut, L. Janssen, Phys. Rev. Lett. 113, 106401 (2014)

    Article  ADS  Google Scholar 

  26. L. Janssen, I.F. Herbut, Phys. Rev. B 92, 045117 (2015)

    Article  ADS  Google Scholar 

  27. I. Boettcher, I.F. Herbut, Phys. Rev. B 93, 205138 (2016)

    Article  ADS  Google Scholar 

  28. J. Wang, J. Phys.: Condens. Matter 30, 125401 (2018); Y. -M. Dong, D. -X. Zheng, J. Wang, J. Phys.: Condens. Matter 31, 275601 (2019); J. Wang, Eur. Phys. J. B 92, 102 (2019)

  29. B. Roy, M.S. Foster, Phys. Rev. X 8, 011049 (2018)

    Google Scholar 

  30. B. Roy, R. J. Slager, V. Juric̆ić, Phys. Rev. X 8, 031076 (2018)

  31. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  32. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  33. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  34. A. Altland, B.D. Simons, M.R. Zirnbauer, Phys. Rep. 359, 283 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. E. Fradkin, S.A. Kivelson, M.J. Lawler, J.P. Eisenstein, A.P. Mackenzie, Annu. Rev. Condens. Matter Phys. 1, 153 (2010)

    Article  ADS  Google Scholar 

  36. S.S. Das, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  37. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, N.A.H. Castro, Rev. Mod. Phys. 84, 1067 (2012)

    Article  ADS  Google Scholar 

  38. A.A. Nersesyan, A.M. Tsvelik, F. Wenger, Nucl. Phys. B 438, 561 (1995)

    Article  ADS  Google Scholar 

  39. T. Stauber, F. Guinea, M.A.H. Vozmediano, Phys. Rev. B 71, 041406 (2005)

    Article  ADS  Google Scholar 

  40. J. Wang, G.-Z. Liu, H. Kleinert, Phys. Rev. B 83, 214503 (2011)

    Article  ADS  Google Scholar 

  41. J. Wang, Phys. Rev. B 87, 054511 (2013)

    Article  ADS  Google Scholar 

  42. J. Wang, C. Ortix, J. van den Brink, D.V. Efremov, Phys. Rev. B 96, 201104(R) (2017)

    Article  ADS  Google Scholar 

  43. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  44. I.L. Aleiner, K.B. Efetov, Phys. Rev. Lett. 97, 236801 (2006)

    Article  ADS  Google Scholar 

  45. M.S. Foster, I.L. Aleiner, Phys. Rev. B 77, 195413 (2008)

    Article  ADS  Google Scholar 

  46. Y.-L. Lee, Y.-W. Lee, Phys. Rev. B 96, 045115 (2017)

    Article  ADS  Google Scholar 

  47. R.M. Nandkishore, S.A. Parameswaran, Phys. Rev. B 95, 205106 (2017)

    Article  ADS  Google Scholar 

  48. Y.-X. Wang, R.M. Nandkishore, Phys. Rev. B 96, 115130 (2017)

    Article  ADS  Google Scholar 

  49. R. Nandkishore, D.A. Huse, S.L. Sondhi, Phys. Rev. B 89, 245110 (2014)

    Article  ADS  Google Scholar 

  50. I. Mandal, Ann. Phys. 392, 179 (2018)

    Article  ADS  Google Scholar 

  51. B. Roy, Phys. Rev. B 96, 041113 (2017)

    Article  ADS  Google Scholar 

  52. S. Sur, B. Roy, Phys. Rev. Lett. 123, 207601 (2019)

    Article  ADS  Google Scholar 

  53. B. Roy, V. Juricic, S.D. Sarma, Sci. Rep. 6, 32446 (2016)

    Article  ADS  Google Scholar 

  54. Y.M. Dong, Y.H. Zhai, D.X. Zheng, J. Wang, Phys. Rev. B 102, 134204 (2020)

    Article  ADS  Google Scholar 

  55. Y.H. Zhai, J. Wang, Nucl. Phys. B 966, 115371 (2021)

    Article  Google Scholar 

  56. Y. Matsuda, K. Izawa, I. Vekhter, J. Phys.: Condens. Matter 18, R705 (2006)

    ADS  Google Scholar 

  57. M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)

    Article  ADS  Google Scholar 

  58. S. Sur, R. Nandkishore, New J. Phys. 18, 115006 (2016)

    Article  ADS  Google Scholar 

  59. S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  60. M. Vojta, Y. Zhang, S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000)

    Article  ADS  Google Scholar 

  61. M. Vojta, Y. Zhang, S. Sachdev, Phys. Rev. B 62, 6721 (2000)

    Article  ADS  Google Scholar 

  62. M. Vojta, Y. Zhang, S. Sachdev, Int. J. Mod. Phys. B 14, 3719 (2000)

    Article  ADS  Google Scholar 

  63. M. Vojta, Rep. Prog. Phys. 66, 2069 (2003)

    Article  ADS  Google Scholar 

  64. H.V. Lohneysen, A. Rosch, M. Vojta, P. Wolfle, Rev. Mod. Phys. 79, 1015 (2007)

    Article  ADS  Google Scholar 

  65. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  66. J. Polchinski. ar**v: hep-th/9210046 (1992)

  67. R. Shankar, Rev. Mod. Phys. 66, 129 (1994)

    Article  ADS  Google Scholar 

  68. S. Matsuura, P.-Y. Chang, A.P. Schnyder, S. Ryu, New J. Phys. 15, 065001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  69. S.E. Han, G.Y. Cho, E.G. Moon, Phys. Rev. B 95, 094502 (2017)

    Article  ADS  Google Scholar 

  70. P. Frigeri, D. Agterberg, A. Koga, M. Sigrist, Phys. Rev. Lett. 92, 097001 (2004)

    Article  ADS  Google Scholar 

  71. P. Brydon, A.P. Schnyder, C. Timm, Phys. Rev. B 84, 020501 (2011)

    Article  ADS  Google Scholar 

  72. W.H. Bian, X.Z. Chu, J. Wang, Eur. Phys. J. Plus 138, 607 (2023)

    Article  Google Scholar 

  73. B. Roy, S.D. Sarma, Phys. Rev. B 94, 115137 (2016)

    Article  ADS  Google Scholar 

  74. B. Roy, P. Goswami, J.D. Sau, Phys. Rev. B 94, 041101(R) (2016)

    Article  ADS  Google Scholar 

  75. B. Roy, Y. Alavirad, J.D. Sau, Phys. Rev. Lett. 118, 227002 (2017)

    Article  ADS  Google Scholar 

  76. A.L. Szabó, B. Roy, Phys. Rev. B 103, 205135 (2021)

    Article  ADS  Google Scholar 

  77. I.F. Herbut, V. Juricic, B. Roy, Phys. Rev. B 79, 085116 (2009)

    Article  ADS  Google Scholar 

  78. F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

    Article  ADS  Google Scholar 

  79. P. Coleman, Introduction to Many Body Physics (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  80. J. Wang, Phys. Lett. A 379, 1917 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  81. S. Edwards, P.W. Anderson, J. Phys. F 5, 965 (1975)

    Article  ADS  Google Scholar 

  82. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  83. I.V. Lerner. ar**v:cond-mat/0307471 (2003)

  84. J.-H. She, J. Zaanen, A.R. Bishop, A.V. Balatsky, Phys. Rev. B 82, 165128 (2010)

    Article  ADS  Google Scholar 

  85. J.H. She, M.J. Lawler, E.A. Kim, Phys. Rev. B 92, 035112 (2015)

    Article  ADS  Google Scholar 

  86. Y. Huh, S. Sachdev, Phys. Rev. B 78, 064512 (2008)

    Article  ADS  Google Scholar 

  87. E.-A. Kim, M.J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, Phys. Rev. B 77, 184514 (2008)

    Article  ADS  Google Scholar 

  88. J. Wang, G.-Z. Liu, Phys. Rev. D 90, 125015 (2014)

    Article  ADS  Google Scholar 

  89. J. Wang, G.-Z. Liu, Phys. Rev. B 92, 184510 (2015)

    Article  ADS  Google Scholar 

  90. J. Wang, G.-Z. Liu, D.V. Efremov, J. van den Brink, Phys. Rev. B 95, 024511 (2017)

    Article  ADS  Google Scholar 

  91. J. Wang, Supercond. Sci. Technol. 35, 125006 (2022)

    Article  ADS  Google Scholar 

  92. X.Y. Ren, Y.H. Zhai, J. Wang, Nucl. Phys. B 975, 115651 (2022)

    Article  Google Scholar 

  93. S. Maiti, A.V. Chubukov, Phys. Rev. B 82, 214515 (2010)

    Article  ADS  Google Scholar 

  94. A.V. Chubukov, Annu. Rev. Condens. Matter Phys. 3, 57 (2012)

    Article  Google Scholar 

  95. A.V. Chubukov, M. Khodas, R.M. Fernandes, Phys. Rev. X 6, 041045 (2016)

    Google Scholar 

  96. R. Nandkishore, L.S. Levitov, A.V. Chubukov, Nat. Phys. 8, 158 (2012)

    Article  Google Scholar 

  97. J. Wang, Nucl. Phys. B 961, 115230 (2020)

    Article  Google Scholar 

  98. G.D. Mahan, Many-Particle Physics, 2nd edn. (Plenum, New York, 2000)

    Book  Google Scholar 

  99. E.A. Kim, M.J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, Phys. Rev. B 77, 184514 (2008)

    Article  ADS  Google Scholar 

  100. C. Xu, Y. Qi, S. Sachdev, Phys. Rev. B 78, 134507 (2008)

    Article  ADS  Google Scholar 

  101. A. Altland, B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  102. F. Schwabl, Statistical Mechanics, 2nd edn. (Springer, Berlin, 2006)

    Book  Google Scholar 

  103. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (New York, Cambridge, 1994)

    Google Scholar 

  104. C.J. Halboth, W. Metzner, Phys. Rev. Lett. 85, 5162 (2000)

    Article  ADS  Google Scholar 

  105. C.J. Halboth, W. Metzner, Phys. Rev. B 61, 7364 (2000)

    Article  ADS  Google Scholar 

  106. J. Wang, A. Eberlein, W. Metzner, Phys. Rev. B 89, 121116(R) (2014)

    Article  ADS  Google Scholar 

  107. Y.S. Fu, J. Wang. ar**v:cond-mat/2305.00648 (2023)

Download references

Acknowledgments

We thank Yi-Sheng Fu and Wen Liu for the helpful discussions. J.W. was partially supported by the National Natural Science Foundation of China under Grant No. 11504360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Wang.

Appendices

Appendix A: One-loop RG equations

Following the spirit of RG approach [65,66,67] and employing the RG rescaling transformations (10)–(13), and taking into account all the one-loop corrections as depicted in Figs. 18 and 19, which contain the interplay between fermion-fermion interactions and disorder scatterings (cf. our previous work [72] for details), we finally derive the coupled RG flow equations of all coupling parameters,

$$\begin{aligned} \frac{{\textrm{d}}v_z}{{\textrm{d}}l}&= [4\mathcal {C}_{1}\lambda _{2}-\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})]v_z, \end{aligned}$$
(A1)
$$\begin{aligned} \frac{{\textrm{d}}v_p}{{\textrm{d}}l}&= [4\mathcal {C}_{1}\lambda _{1}-\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})]v_p, \end{aligned}$$
(A2)
$$\begin{aligned} \frac{{\textrm{d}}\lambda _1}{{\textrm{d}}l}&= 2\lambda _1\Bigl [-\frac{1}{2}+\mathcal {C}_{3} \left( -3\lambda _{1}-2\lambda _{2}-\lambda _{3}+\lambda _{4} +\lambda _{5}-\lambda _{6} \right) + \mathcal {C}_{7}(\Delta _{1} -\Delta _{2} -7\Delta _{3} -\Delta _{41} -\Delta _{42} -\Delta _{43})\nonumber \\{} & {} \quad -\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})\Bigr ], \end{aligned}$$
(A3)
$$\begin{aligned} \frac{{\textrm{d}}\lambda _2}{{\textrm{d}}l}&= 2\lambda _2\Bigl [-\frac{1}{2}+\mathcal {C}_{4} \left( -2\lambda _{1}-3\lambda _{2}+\lambda _{3}+\lambda _{4} -\lambda _{5}-\lambda _{6} \right) + \mathcal {C}_{7}(-\Delta _{1} +\Delta _{2} +\Delta _{3} -\Delta _{41} -\Delta _{42} -\Delta _{43} )\nonumber \\{} & {} \quad -\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})\Bigr ], \end{aligned}$$
(A4)
$$\begin{aligned} \frac{{\textrm{d}}\lambda _3}{{\textrm{d}}l}&= 2\lambda _3\Bigl [-\frac{1}{2}+\mathcal {C}_{4} \left( -2\lambda _{1}+\lambda _{2}-3\lambda _{3}-\lambda _{4} +\lambda _{5}+\lambda _{6} \right) + \mathcal {C}_7(-\Delta _1 +\Delta _2 +\Delta _3 +\Delta _{41} +7\Delta _{42} +\Delta _{43})\nonumber \\{} & \quad {} -\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})\Bigr ] -4\mathcal {C}_6\lambda _5\Delta _{41}, \end{aligned}$$
(A5)
$$\begin{aligned} \frac{{\textrm{d}}\lambda _4}{{\textrm{d}}l}&= \lambda _4[-1-4\mathcal {C}_{2} (\Delta _{41}+\Delta _{42})] -4\mathcal {C}_5(\lambda _5\Delta _2 +\lambda _6\Delta _3) -2\lambda _{6}(\mathcal {C}_{4}\lambda _{2} +\mathcal {C}_{3}\lambda _{1}), \end{aligned}$$
(A6)
$$\begin{aligned} \frac{{\textrm{d}}\lambda _5}{{\textrm{d}}l}&= 2\lambda _5 \Bigl [-\frac{1}{2}+ \mathcal {C}_3 (\lambda _1-2\lambda _2+\lambda _3 +\lambda _4-3\lambda _5-\lambda _6 ) + \mathcal {C}_7(\Delta _1 -\Delta _2 +\Delta _3 +\Delta _{41} +\Delta _{42} -\Delta _{43} )\nonumber \\{} &\quad {} -\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})\Bigr ] +2\mathcal {C}_1\lambda _2\lambda _6- 4(\mathcal {C}_6\lambda _3\Delta _{41} +\mathcal {C}_5\lambda _4\Delta _2 +\mathcal {C}_5\lambda _6\Delta _1), \end{aligned}$$
(A7)
$$\begin{aligned} \frac{{\textrm{d}}\lambda _6}{{\textrm{d}}l}&= 2\lambda _6\Bigl [-\frac{1}{2}+ \mathcal {C}_1 (-\lambda _1-\lambda _2+\lambda _3 +\lambda _4-\lambda _5-3\lambda _6) -(\mathcal {C}_3\lambda _2+\mathcal {C}_4\lambda _1) -2\mathcal {C}_2(\Delta _1 +\Delta _2 +\Delta _{41} +\Delta _{42} )\Bigr ]\nonumber \\{} &\quad {} +2\mathcal {C}_1\lambda _2\lambda _5 -4\mathcal {C}_5(\lambda _4\Delta _3 +\lambda _5\Delta _1), \end{aligned}$$
(A8)
$$\begin{aligned} \frac{{\textrm{d}}\Delta _1}{{\textrm{d}}l}&= 2\mathcal {C}_2\Delta _1 (\Delta _1+\Delta _2+\Delta _3 +\Delta _{41}+\Delta _{42}+\Delta _{43}) +8\mathcal {C}_5\Delta _2\Delta _3, \end{aligned}$$
(A9)
$$\begin{aligned} \frac{{\textrm{d}}\Delta _2}{{\textrm{d}}l}&= \Delta _2\Big [2\mathcal {C}_{2} (-3\Delta _{1}-3\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})+ \mathcal {C}_1 (\lambda _1+\lambda _2+\lambda _3 -\lambda _4+\lambda _5-\lambda _6) \Bigr ]+8\mathcal {C}_5\Delta _1\Delta _3, \end{aligned}$$
(A10)
$$\begin{aligned} \frac{{\textrm{d}}\Delta _{3}}{{\textrm{d}}l}&= \Delta _{3}\Big [ 4\mathcal {C}_7 (\Delta _1-\Delta _2+\Delta _3 -\Delta _{41}-\Delta _{42}-\Delta _{43}) -2\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})\nonumber \\{} &\quad {} + \mathcal {C}_3 (-\lambda _1+\lambda _2+\lambda _3 -\lambda _4-\lambda _5+\lambda _6) \Bigr ]+8\mathcal {C}_5\Delta _1\Delta _2, \end{aligned}$$
(A11)
$$\begin{aligned} \frac{{\textrm{d}}\Delta _{41}}{dl}&= \Delta _{41}\Big [ 4\mathcal {C}_7 (-\Delta _1+\Delta _2+\Delta _3 -\Delta _{41}+\Delta _{42}+\Delta _{43}) -2\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})\nonumber \\{} &\quad {} + \mathcal {C}_4 (\lambda _1-\lambda _2+\lambda _3 +\lambda _4-\lambda _5-\lambda _6) \Bigr ]+8\mathcal {C}_5\Delta _{42}\Delta _{43}, \end{aligned}$$
(A12)
$$\begin{aligned} \frac{d\Delta _{42}}{{\textrm{d}}l}&= \Delta _{42}\Big [ 4\mathcal {C}_7 (-\Delta _1+\Delta _2+\Delta _3 +\Delta _{41}-\Delta _{42}+\Delta _{43}) -2\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})\nonumber \\{} & \quad {} + \mathcal {C}_4 (\lambda _1-\lambda _2-\lambda _3 +\lambda _4-\lambda _5-\lambda _6) \Bigr ]+ 8\mathcal {C}_5\Delta _{41}\Delta _{43}, \end{aligned}$$
(A13)
$$\begin{aligned} \frac{{\textrm{d}}\Delta _{43}}{{\textrm{d}}l}&= \Delta _{43}\Big [ 4\mathcal {C}_7 (-\Delta _1+\Delta _2+\Delta _3 +\Delta _{41}+\Delta _{42}-\Delta _{43}) -2\mathcal {C}_{2} (\Delta _{1}+\Delta _{2}+\Delta _{3} +\Delta _{41}+\Delta _{42}+\Delta _{43})\nonumber \\{} & \quad {} + \mathcal {C}_4 (\lambda _1-\lambda _2+\lambda _3 -\lambda _4+\lambda _5+\lambda _6) \Bigr ]+ 8\mathcal {C}_5\Delta _{41}\Delta _{42}. \end{aligned}$$
(A14)
Fig. 18
figure 18

One-loop corrections to the fermion-fermion couplings ai and the fermion-disorder strengths jm (the solid, dashed and wavy lines represent the fermion propagator, fermion-fermion interactions and disorder scattering, respectively) [54, 72, 73]

Fig. 19
figure 19

One-loop corrections to the fermion propagator due to the fermion-fermion interactions a and b as well as disorder scatterings c (the solid, dashed, and wavy lines represent the fermion propagator, fermion-fermion interaction, and disorder scattering, respectively)

Hereby the coefficients \(\mathcal {F}\), \(\mathcal {J}\), and \(\mathcal {K}\) appearing in Eqs. (15)–(17) are explicitly provided in the right hand of above RG equations. The coefficients \(\mathcal {C}_i\) with \(i=1-7\) are nominated as follows

$$\begin{aligned} \mathcal {C}_{1}\equiv & {} \frac{1}{(2\pi )^3} \int _{0}^{\pi }{\textrm{d}}\theta \frac{\pi }{(\upsilon _{z}^2\sin ^2\theta +\upsilon _{p}^2\cos ^2\theta )^{1/2}}, \end{aligned}$$
(A15)
$$\begin{aligned} \mathcal {C}_{2}\equiv & {} \frac{1}{(2\pi )^3} \int _{0}^{\pi }{\textrm{d}}\theta \frac{2\pi }{\upsilon _{z}^2\sin ^2\theta +\upsilon _{p}^2\cos ^2\theta }, \end{aligned}$$
(A16)
$$\begin{aligned} \mathcal {C}_{3}\equiv & {} \frac{1}{(2\pi )^3} \int _{0}^{\pi }{\textrm{d}}\theta \frac{\pi \upsilon _{z}^2\sin ^2\theta }{(\upsilon _{z}^2\sin ^2\theta +\upsilon _{p}^2\cos ^2\theta )^{3/2}},\end{aligned}$$
(A17)
$$\begin{aligned} \mathcal {C}_{4}\equiv & {} \frac{1}{(2\pi )^3} \int _{0}^{\pi }{\textrm{d}}\theta \frac{\pi \upsilon _{p}^2\cos ^2\theta }{(\upsilon _{z}^2\sin ^2\theta +\upsilon _{p}^2\cos ^2\theta )^{3/2}},\end{aligned}$$
(A18)
$$\begin{aligned} \mathcal {C}_{5}\equiv & {} \frac{1}{(2\pi )^3} \int _{0}^{\pi }{\textrm{d}}\theta \frac{4\pi \upsilon _{z}^2\sin ^2\theta }{(\upsilon _{z}^2\sin ^2\theta +\upsilon _{p}^2\cos ^2\theta )^2},\end{aligned}$$
(A19)
$$\begin{aligned} \mathcal {C}_{6}\equiv & {} \frac{1}{(2\pi )^3} \int _{0}^{\pi }{\textrm{d}}\theta \frac{4\pi \upsilon _{p}^2\cos ^2\theta }{(\upsilon _{z}^2\sin ^2\theta +\upsilon _{p}^2\cos ^2\theta )^2},\end{aligned}$$
(A20)
$$\begin{aligned} \mathcal {C}_{7}\equiv & {} \frac{1}{(2\pi )^3} \int _{0}^{\pi }{\textrm{d}}\theta \frac{2\pi (\upsilon _{p}^2\cos ^2\theta -\upsilon _{z}^2\sin ^2\theta )}{(\upsilon _{z}^2\sin ^2\theta +\upsilon _{p}^2\cos ^2\theta )^2}. \end{aligned}$$
(A21)

Appendix B: One-loop equations of source terms

Paralleling the analogous procedures in Appendix A, we calculate the one-loop corrections to the strengths of source terms as shown in Fig. 20, and then adopt the RG rescalings (10)–(13) to finally derive the following flow equations for \(g_i\) with \(i=1-6\),

$$\begin{aligned} \frac{{\textrm{d}}g_1}{{\textrm{d}}l}&= \Bigl [(1-\eta )+\frac{1}{32\pi ^3}[(\lambda _1-\lambda _2-\lambda _3-\lambda _4+\lambda _5+\lambda _6 -\Delta _1-\Delta _2+\Delta _3\nonumber \\{} &\quad {} -\Delta _{41}-\Delta _{42}-\Delta _{43})I_2 +8(\lambda _2+\Delta _2)I_2+16(\lambda _1+\Delta _3) I_1]\Bigl ]g_1, \end{aligned}$$
(B1)
$$\begin{aligned} \frac{{\textrm{d}}g_2}{{\textrm{d}}l}&= \Bigl [(1-\eta )+\frac{\mathcal {F}_{1}(\theta ,\theta ')}{4\pi ^2} [2(\lambda _1+\Delta _3)I_1 +(\lambda _2+\Delta _2)I_2]\nonumber \\{} & \quad +\frac{\mathcal {F}_{2}(\theta ,\theta ')}{4\pi ^2} (\lambda _1-\lambda _2-\lambda _3-\lambda _4+\lambda _5+\lambda _6 -\Delta _1-\Delta _2+\Delta _3-\Delta _{41}-\Delta _{42}-\Delta _{43})I_2\Bigl ]g_2, \end{aligned}$$
(B2)
$$\begin{aligned} \frac{{\textrm{d}}g_3}{{\textrm{d}}l}&= \Bigl [(1-\eta )+\frac{\mathcal {F}_{3}(\theta ,\theta ')}{4\pi ^2} [2(\lambda _1+\Delta _3)I_1 +(\lambda _2+\Delta _2)I_2]\nonumber \\{} &\quad + \frac{\mathcal {F}_{4}(\theta ,\theta ')}{4\pi ^2} (\lambda _1-\lambda _2-\lambda _3-\lambda _4+\lambda _5+\lambda _6 -\Delta _1-\Delta _2+\Delta _3-\Delta _{41}-\Delta _{42}-\Delta _{43})I_2\Bigl ]g_3, \end{aligned}$$
(B3)
$$\begin{aligned} \frac{{\textrm{d}}g_4}{{\textrm{d}}l}&= \Bigl [(1-\eta )+\frac{\mathcal {F}_{5}(\theta ,\theta ')}{4\pi ^2} [2(\lambda _1+\Delta _3)I_1 +(\lambda _2+\Delta _2)I_2]\nonumber \\{} & \quad + \frac{\mathcal {F}_{6}(\theta ,\theta ')}{4\pi ^2} (\lambda _1-\lambda _2-\lambda _3-\lambda _4+\lambda _5+\lambda _6 -\Delta _1-\Delta _2+\Delta _3-\Delta _{41}-\Delta _{42}-\Delta _{43})I_2\Bigl ]g_4, \end{aligned}$$
(B4)
$$\begin{aligned} \frac{{\textrm{d}}g_5}{{\textrm{d}}l}&= \Bigl [(1-\eta )+\frac{\mathcal {F}_{7}(\theta ,\theta ')}{4\pi ^2} [2(\lambda _1+\Delta _3)I_1 +(\lambda _2+\Delta _2)I_2]\nonumber \\{} & \quad + \frac{\mathcal {F}_{8}(\theta ,\theta ')}{4\pi ^2} (\lambda _1-\lambda _2-\lambda _3-\lambda _4+\lambda _5+\lambda _6 -\Delta _1-\Delta _2+\Delta _3-\Delta _{41}-\Delta _{42}-\Delta _{43})I_2\Bigl ]g_5, \end{aligned}$$
(B5)
$$\begin{aligned} \frac{{\textrm{d}}g_6}{{\textrm{d}}l}&= \Bigl [(1-\eta )+\frac{\mathcal {F}_{9}(\theta ,\theta ')}{4\pi ^2} [2(\lambda _1+\Delta _3)I_1 +(\lambda _2+\Delta _2)I_2]\nonumber \\{} & \quad + \frac{\mathcal {F}_{10}(\theta ,\theta ')}{4\pi ^2} (\lambda _1-\lambda _2-\lambda _3-\lambda _4+\lambda _5+\lambda _6 -\Delta _1-\Delta _2+\Delta _3-\Delta _{41}-\Delta _{42}-\Delta _{43})I_2\Bigl ]g_6. \end{aligned}$$
(B6)
$$\begin{aligned} I_1&= \int _0^\pi {\textrm{d}}\theta \frac{v_z v_p\sin \theta \cos \theta }{(v_z^2\sin ^2\theta +v_p^2\cos ^2\theta )^{3/2}}, \end{aligned}$$
(B7)
$$\begin{aligned} I_2&= \int _0^\pi d\theta \frac{(v_z^2\sin ^2\theta -v_p^2\cos ^2\theta )}{(v_z^2\sin ^2\theta +v_p^2\cos ^2\theta )^{3/2}}, \end{aligned}$$
(B8)

and

$$\begin{aligned} \mathcal {F}_{1}(\theta ,\theta ')\equiv & {} \frac{\sin (4\theta ^\prime )\sin (4\theta )}{16\pi }, \end{aligned}$$
(B9)
$$\begin{aligned} \mathcal {F}_{2}(\theta ,\theta ')\equiv & {} \frac{\sin (4\theta ^\prime )\sin ^2(4\theta )}{128\pi }, \end{aligned}$$
(B10)
$$\begin{aligned} \mathcal {F}_{3}(\theta ,\theta ')\equiv & {} \frac{\cos (2\theta ^\prime ) \cos (2\theta )}{\pi }, \end{aligned}$$
(B11)
$$\begin{aligned} \mathcal {F}_{4}(\theta ,\theta ')\equiv & {} \frac{\cos (2\theta ^\prime )\cos ^2(2\theta )}{8\pi }, \end{aligned}$$
(B12)
$$\begin{aligned} \mathcal {F}_{5}(\theta ,\theta ')\equiv & {} \frac{\sin (2\theta ^\prime ) \sin (2\theta )}{4\pi }, \end{aligned}$$
(B13)
$$\begin{aligned} \mathcal {F}_{6}(\theta ,\theta ')\equiv & {} \frac{\sin (2\theta ^\prime )\sin ^2(2\theta )}{64\pi }, \end{aligned}$$
(B14)
$$\begin{aligned} \mathcal {F}_{7}(\theta ,\theta ')\equiv & {} \frac{\cos (\theta ^\prime ) \cos (\theta )}{\pi }, \end{aligned}$$
(B15)
$$\begin{aligned} \mathcal {F}_{8}(\theta ,\theta ')\equiv & {} \frac{\cos (\theta ^\prime )\cos ^2(\theta )}{8\pi }, \end{aligned}$$
(B16)
$$\begin{aligned} \mathcal {F}_{9}(\theta ,\theta ')\equiv & {} \frac{\sin (\theta ^\prime ) \sin (\theta )}{\pi }, \end{aligned}$$
(B17)
$$\begin{aligned} \mathcal {F}_{10}(\theta ,\theta ')\equiv & {} \frac{\sin (\theta ^\prime ) \sin ^2(\theta )}{8\pi }, \end{aligned}$$
(B18)

where \(\theta\) and \(\theta '\) serve as the momentum directions of nodal-line fermions involved in the fermion-fermion interactions.

Fig. 20
figure 20

One-loop corrections to the strength of source terms due to fermion-fermion interactions a, b and fermion-disorder interaction c, d. Hereby, the dashed line and wavy line denote the fermion-fermion interactions and fermion-disorder interactions, respectively

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, WH., Wang, J. Critical behavior around the fixed points driven by fermion–fermion interactions and disorders in the nodal-line superconductors. Eur. Phys. J. Plus 139, 586 (2024). https://doi.org/10.1140/epjp/s13360-024-05388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05388-5

Navigation