Log in

The study of heavy quarks pair production at the LHeC and FCC-eh in the collinear generalized double asymptotic scaling (DAS) approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the main idea is the prediction of the linear and nonlinear behavior of heavy quarks pair production cross section at the deep inelastic scattering leptoproduction at the future electron–proton colliders, i.e., the Large Hadron electron Collider (LHeC) and the Future Circular Collider electron-hadron (FCC-eh) at the leading order (LO) and the next-to-leading order (NLO) approximation in perturbative quantum chromodynamics (pQCD) at small x. By considering the nonlinear corrections to the gluon distribution function in the framework of the nonlinear GLR-MQ-ZRS evolution equation and using the Laplace transform technique, based on the parametrization method of structure function \(F_{2}(x,Q^{2})\) and its derivatives, we determine the linear and nonlinear evolution of production cross section and structure functions \(F_{2}(x,Q^{2})\) and \(F_{L}(x,Q^{2})\) and their ratio with respect to variables x and \(Q^{2}\) for heavy quarks of charm and beauty. To study the heavy quark production processes, we use the collinear generalized double asymptotic scaling (DAS) approach in kinematics range of the LHeC and FCC-eh colliders. The computed results are compared with experimental data from HERA and the results of NNPDF4.0 and CT18 Collaborations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Notes

  1. These rules state the relative contributions of processes with different multiplicity of the produced particles to the total cross section of the multiple pomeron exchange in the framework of the Reggeon Field Theory. The main idea stems from the unitarity constraint for the BFKL pomeron which describes the high energy scattering amplitude in the leading \(\log (\frac{1}{x})\) approximation of pQCD.

References

  1. S. Alekhin et al., Phys. Rev. D 96, 014011 (2017)

    Article  ADS  Google Scholar 

  2. S. Alekhin et al., Phys. Rev. D 81, 014032 (2010)

    Article  ADS  Google Scholar 

  3. S. Alekhin, S. Moch. ar**v:1107.0469 (2001)

  4. S. Alekhin, J. Blümlein, S. Moch, Phys. Rev. D 86, 054009 (2012)

    Article  ADS  Google Scholar 

  5. S. Alekhin et al., ar**v:0908.3128 [hep-ph](2009)

  6. S. Alekhin, S. Moch, Phys. Lett. B 699, 345 (2011)

    Article  ADS  CAS  Google Scholar 

  7. H.L. Lai et al., Phys. Rev. D 82, 074024 (2010)

    Article  ADS  Google Scholar 

  8. E. Laenen et al., Phys. Lett. B 291, 325 (1992)

    Article  ADS  Google Scholar 

  9. S. Riemersma, J. Smith, W.L. van Neerven, Phys. Lett. B 347, 143 (1995)

    Article  ADS  CAS  Google Scholar 

  10. S. Forte et al., Nucl. Phys. B 834, 116 (2010)

    Article  ADS  Google Scholar 

  11. R.D. Ball et al., NNPDF Collaboration. Nucl. Phys. B 849, 296 (2011)

    Article  ADS  Google Scholar 

  12. R.D. Ball et al., NNPDF Collaboration. Nucl. Phys. B 855, 153 (2012)

    Article  ADS  Google Scholar 

  13. R.D. Ball et al. ar**v:1710.05935 (2017)

  14. Heikki Mantysaari, Jani Penttala, JHEP 08, 242 (2022)

    ADS  Google Scholar 

  15. Heikki Mantysaari, Jani Penttala, Phys. Lett. B 823, 136723 (2021)

    Article  CAS  Google Scholar 

  16. Tie-Jiun. Hou et al., JHEP 1802, 059 (2018)

    Article  ADS  Google Scholar 

  17. Hong-Tai. Li et al., Phys. Rev. D 106, 114030 (2022)

    Article  ADS  CAS  Google Scholar 

  18. S.J Brodsky et al., Eur. Phys. J. C78, 483 (2018)

  19. F.D. Aaron et al., H1 Collaboration. Eur. Phys. J. C 65, 89 (2010)

  20. H. Abramowicz et al., ZEUS Collaboration. JHEP 1409, 127 (2014)

  21. H. Abramowicz et al., H1 and ZEUS Collaborations. Eur. Phys. J. C 78, 473 (2018)

  22. J. Breitweg et al., ZEUS Collaboration. Eur. Phys. J. C 12, 35 (2000)

  23. C. Adloff et al., H1 Collaboration. Phys. Lett. B 528, 199 (2002)

  24. A. Aktas et al., H1 Collaboration. Eur. Phys. J. C 51, 271 (2007)

  25. S. Chekanov et al., ZEUS Collaboration. Eur. Phys. J. C 63, 171 (2009)

  26. H. Abramowicz et al., ZEUS Collaboration. JHEP 1305, 023 (2013)

  27. A. Aktas et al., H1 Collaboration. Eur. Phys. J. C 45, 23 (2006)

  28. H. Abramowicz et al., ZEUS Collaboration. JHEP 1409, 127 (2014)

  29. H. Abramowicz et al., ZEUS Collaboration. Eur. Phys. J. C 69, 347 (2010)

  30. H. Abramowicz et al., ZEUS Collaboration. Eur. Phys. J. C 71, 1573 (2011)

  31. H. Abramowicz et al., H1 and ZEUS Collaborations. Eur. Phys. J. C 75, 580 (2015)

  32. M. Klein, ar**v:1802.04317 [hep-ph], 2018

  33. M. Klein, Ann. Phys. 528, 138 (2016)

    Article  MathSciNet  CAS  Google Scholar 

  34. N. Armesto et al., Phys. Rev. D 100, 074022 (2019)

    Article  ADS  CAS  Google Scholar 

  35. P. Agostini et al., [LHeC Collaboration and FCC-eh study Group], CERN-ACC-Note-2020-0002. J. Phys. G48, 110501 (2021)

  36. F.D. Aaron et al., H1 Collaboration. JHEP 1001, 109 (2010)

  37. J. Breitweg et al., ZEUS Collaboration. Phys. Lett. B 407, 432 (1997)

  38. J. Breitweg et al., ZEUS Collaboration. Phys. Lett. B 487, 53 (2000)

  39. A. Abada et al., FCC Collaboration. Eur. Phys. J. C 79, 479 (2019)

  40. S. Alekhin, J. Blumlein, S.Moch, arxiv:2006.07032 [hep-ph] (2020)

  41. W.K. Tung, S. Kretzer, C. Schmidt, J. Phys. G 28, 983 (2002)

    Article  ADS  CAS  Google Scholar 

  42. LHeC Collaboration and FCC-eh study Group, P. Agostini et.al. J. Phys. G: Nucl. Part. Phys. 48, 110501 (2021)

  43. LHec Study Group, J.L. Abelleira Fernandez et.al., J. Phys. G:Nucl. Part. Phys.39, 075001 (2012)

  44. A.V. Kotikov, A.V. Lipatov, P. Zhang, Phys. Rev. D 104, 05404042 (2021)

    Article  ADS  Google Scholar 

  45. L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975)

    Google Scholar 

  46. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  47. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 289 (1977)

    Article  ADS  Google Scholar 

  48. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  49. K. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59, 014017 (1999)

    Article  ADS  Google Scholar 

  50. K. Golec-Biernat, Acta. Phys. Polon. B 33, 2771 (2002)

    ADS  CAS  Google Scholar 

  51. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1996)

    Article  ADS  Google Scholar 

  52. Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000)

    Article  ADS  Google Scholar 

  53. I. Balitsky, Nucl. Phys. B 463, 99 (1996)

    Article  ADS  Google Scholar 

  54. I. Balitsky, Phys. Lett. B 518, 235 (2001)

    Article  ADS  CAS  Google Scholar 

  55. M. Devee, J.K. Sarma, Eur. Phys. J. C 74, 2751 (2014)

    Article  ADS  Google Scholar 

  56. B.Z. Kopeliovich, A.H. Rezaeian, Int. J. Mod. Phys. E 18, 1629 (2009)

    Article  ADS  CAS  Google Scholar 

  57. M.R. Pelicer et al., Eur. Phys. J. C 79, 9 (2019)

    Article  ADS  Google Scholar 

  58. B. Rezaei, G.R. Boroun, Phys. Rev. C 101, 045202 (2020)

    Article  ADS  CAS  Google Scholar 

  59. B. Rezaei, G.R. Boroun, Eur. Phys. J. A 55, 66 (2019)

    Article  ADS  CAS  Google Scholar 

  60. H. Khanpour, Phys. Rev. D 99, 054007 (2019)

    Article  ADS  CAS  Google Scholar 

  61. G.R. Boroun, JETP Lett. 114, 1 (2021)

    Article  ADS  CAS  Google Scholar 

  62. G.R. Boroun, Eur. Phys. J. C 81, 851 (2021)

    Article  ADS  CAS  Google Scholar 

  63. P. Phukan, M. Lalung, J.K. Sarma, Nucl. Phys. A 968, 275 (2017)

    Article  ADS  CAS  Google Scholar 

  64. M. Lalung, P. Phukan, J.K. Sarma, Int. J. Theoret. Phys. 56, 3625 (2017)

    Article  Google Scholar 

  65. G.R. Boroun, Eur. Phys. J. Plus 138, 252 (2023)

    Article  CAS  Google Scholar 

  66. G.R. Boroun, B. Rezaei, Phys. Rev. C 103, 065202 (2021)

    Article  ADS  CAS  Google Scholar 

  67. S. Zarrin, S. Dadfar, Phys. Rev. D 106, 094007 (2022)

    Article  ADS  CAS  Google Scholar 

  68. G.R. Boroun, Eur. Phys. J. C 831, 42 (2023)

    Article  ADS  Google Scholar 

  69. G.R. Boroun, Eur. Phys. J. Plus 137, 259 (2022)

    Article  Google Scholar 

  70. G.R. Boroun, Eur. Phys. J. Plus 137, 371 (2027)

    Article  Google Scholar 

  71. W. Zhu, Nucl. Phys. B 551, 245 (1999)

    Article  ADS  Google Scholar 

  72. W. Zhu, J.H. Ruan, Nucl. Phys. B 559, 378 (1999)

    Article  ADS  Google Scholar 

  73. W. Zhu, Z.Q. Shen, HEP NP 29, 109 (2005)

    CAS  Google Scholar 

  74. W. Zhu, D. Xue, K. Chai, Z. Xu, Phys. Lett. B 317, 200 (1993)

    Article  ADS  CAS  Google Scholar 

  75. M. Lalung, P. Phukan, J.K. Sarma, Nucl. Phys. A 992, 121615 (2019)

    Article  CAS  Google Scholar 

  76. M.M. Block, L. Durand, D.W. Mckay, Phys. Rev. D 77, 094003 (2008)

    Article  ADS  Google Scholar 

  77. M.M. Block, L. Durand, D.W. Mckay, Phys. Rev. D 79, 014031 (2009)

    Article  ADS  Google Scholar 

  78. A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129 (2004)

    Article  ADS  Google Scholar 

  79. W.L. Van Necrven, A. Vogt, Phys. Lett. B 490, 111 (2000)

    Article  ADS  Google Scholar 

  80. M. Froissart, Phys. Rev. D 123, 1053 (1961)

    Article  ADS  CAS  Google Scholar 

  81. M.M. Block, L. Durand, P. Ha, Phys. Rev. D 89, 094027 (2014)

    Article  ADS  Google Scholar 

  82. J. Kwiecinski et al., Phys. Rev. D 42, 3645 (1990)

    Article  ADS  CAS  Google Scholar 

  83. L.P. Kaptari, A.V. Kotikov, N. Yu, P.. Zhang Chernikova, Phys. Rev. D 99, 096019 (2019)

    Article  ADS  CAS  Google Scholar 

  84. Particle data group Collaboration, Review of particle physics. Phys. Rev. D 98, 030001 (2018)

  85. A.D. Martin, W.J. Striling, R.S. Thorme, G. Watt, Eur. Phys. J. C 63, 189 (2009)

    Article  ADS  CAS  Google Scholar 

  86. NNPDF Collaboration, R. D. Ball et.al., JHEP 1504, 040 (2015)

  87. F.D. Aaron et al., H1 Collaboration. Eur. Phys. J. C 72, 2252 (2012)

  88. Tie-Jiun. Hou et al., Phys. Rev. D 103, 014013 (2021)

    Article  ADS  CAS  Google Scholar 

  89. R.D. Ball et al., NNPDF Collaboration. Eur. Phys. J. C 82, 428 (2022)

  90. A.Y. Illarionov, B.A. Kniehl, A.V. Kotikov, Phys. Lett. B 663, 66 (2008)

    Article  ADS  CAS  Google Scholar 

  91. A.V. Kotikov, A.V. Lipatov, G. Parente, N.P. Zotov, Eur. Phys. J. C 26, 51 (2002)

    Article  ADS  CAS  Google Scholar 

  92. V.P. Goncalves, M.V.T. Machado, Phys. Rev. Lett. 91, 202002 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  93. N.. Ya.. Ivanov, Nucl. Phys. B 814, 142 (2009)

    Article  ADS  Google Scholar 

  94. N.A. Abdulov, A.V. Kotikov, A.V. Lipatov, JETP Lett. 117, 401 (2023)

    Article  ADS  CAS  Google Scholar 

  95. E. Laenen et al., Nucl. Phys. B 392, 162 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the EPJP referee for his/her suggestions that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Appendices

Appendix A

The NLO collinear coefficient function of a heavy quark production process are rather lengthy and not published in print, they are only available as computer codes [95]. For the purpose of this paper, it is sufficient to work in the high energy regime at \(x\ll 1\), the coefficient functions in the LO and NLO orders of the perturbation theory have the compact form [44]

$$\begin{aligned} B_{2,g}^{(0)}(x,\xi )&=-2x\beta [(1-4x(2-\xi )(1-x)-(1-2x(1-2\xi )+2x^{2}(1-6\xi -4\xi ^{2}))L(\beta )], \nonumber \\ B_{2,L}^{(0)}(x,\xi )&=8x^{2}\beta [(1-x)-2x\xi L(\beta )], \nonumber \\ B_{k,g}^{(1)}(x,\xi )&=\beta [R_{k,g}^{(1)}(1,\xi )+4C_{A} B_{k,g}^{(0)}(1,\xi )L_{\mu }], \quad L_{\mu }=\ln (\frac{4m^{2}}{\mu ^{2}}), \end{aligned}$$
(29)

with

$$\begin{aligned} R_{2,g}^{(1)}(1,\xi )&=\frac{8}{9}C_{A}[5+(13-10\xi )J(\xi )+6(1-\xi )I(\xi )], \nonumber \\ R_{L,g}^{(1)}(1,\xi )&=-\frac{16}{9}C_{A}x_{1}[1-12\xi -(3+4\xi (1-6\xi ))J(\xi )+12\xi (1+3\xi )I(\xi )], \nonumber \\ B_{2,g}^{(0)}(1,\xi )&=\frac{2}{3}[1+2(1-\xi )J(\xi )], \nonumber \\ B_{L,g}^{(0)}(1,\xi )&=\frac{4}{3}x_{1}[1+6\xi -4\xi (1+3\xi )J(\xi )], \end{aligned}$$
(30)

where

$$\begin{aligned} I(\xi )&=-\sqrt{x_{1}}[\zeta _{2}+\frac{1}{2}\ln ^{2}(t)-\ln (\xi x_{1}) \ln (t)+2Li_{2}(-t)], \nonumber \\ J(\xi )&=-\sqrt{x_{1}}\ln (t), \quad t= \frac{1-\sqrt{x_{1}}}{1+\sqrt{x_{1}}}, \nonumber \\ \beta ^{2}&=1-\frac{4\xi x}{1-x}, \nonumber \\ L(\beta )&=\frac{1}{\beta }\ln \frac{1+\beta }{1-\beta } \nonumber \\ Li_{2}(x)&=-\int _{0}^{1}\frac{dy}{y}\ln (1-xy), \end{aligned}$$
(31)

where \(Li_{2}(x)\) is the dilogarithmic function.

Appendix B

The effective parameters in parametrization of the proton structure function \(F_{2}(x,Q^{2})\) are defined by the following forms

$$\begin{aligned} D(Q^{2})&=\frac{Q^{2}(Q^{2}+\lambda M^{2})}{(Q^{2}+ M^{2})^{2}}, \nonumber \\ A_{0}(Q^{2})&=a_{00}+a_{01}L_{2},\quad A_{i}(Q^{2})=\sum _{k=0}^{2}a_{ik}L_{2}^{k},i=(1,2), \end{aligned}$$
(32)

with the logarithmic terms L as

$$\begin{aligned} L=\ln \left( \frac{1}{x}\right) +L_{1},\quad L_{1}=\ln \left( \frac{Q^{2}}{Q^{2}+\mu ^{2}}\right) , \quad L_{2}=\ln \left( \frac{Q^{2}+\mu ^{2}}{\mu ^{2}}\right) , \end{aligned}$$
(33)

where the effective parameters M and \(\mu ^{2}\) are the effective mass and a scale factor, respectively. The values of effective parameters from fit of experimental data [36,37,38] are given by

$$\begin{aligned} \mu ^{2}&=2.82\pm 0.29\, \textrm{GeV}^{2}, \quad M^{2}=0.753\pm 0.008\,\textrm{GeV}^{2}, \nonumber \\ n&=11.49\pm 0.99, \qquad \lambda =2.430\pm 0.153, \end{aligned}$$
(34)

and

$$\begin{aligned} a_{00}&=0.255\pm 0.016, \qquad a_{01}=0.1475\pm 0.03025, \nonumber \\ a_{10}&=8.205\times 10^{-4}\pm 4.62\times 10^{-4}, \quad a_{11} =-5.148\times 10^{-2}\pm 8.19\times 10^{-3},\nonumber \\ a_{12}&=-4.725\times 10^{-3}\pm 1.01\times 10^{-3}, \quad a_{20} =2.170\times 10^{-3}\pm 1.42\times 10^{-4}, \nonumber \\ a_{21}&=1.244\times 10^{-2}\pm 8.56\times 10^{-4}, \quad a_{22} =5.958\times 10^{-4}\pm 2.32\times 10^{-4}. \end{aligned}$$
(35)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karampur, E., Boroun, G.R. The study of heavy quarks pair production at the LHeC and FCC-eh in the collinear generalized double asymptotic scaling (DAS) approach. Eur. Phys. J. Plus 139, 151 (2024). https://doi.org/10.1140/epjp/s13360-024-04907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04907-8

Navigation