Log in

Founding a mathematical diffusion model in linguistics: the case study of German syntactic features in the North-Eastern Italian dialects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The initial motivation for this work was the linguistic case of the spread of Germanic syntactic features into Romance dialects of the North-Eastern Italy, which occurred after the immigration of German people in the Tyrol during the High Middle Age. To obtain a representation of the data over the territory suitable for a mathematical formulation, an interactive map is produced as a first step, using tools of what is called Geographic Data Science. A smooth two-dimensional surface \(\mathcal {G}\) is introduced, expressing locally which fraction of territory uses a given German language feature: it is obtained by a piece-wise cubic curvature-minimizing interpolant of the discrete function that says if at any surveyed locality that feature is used or not. This surface \(\mathcal {G}\) is thought of as the value at the present time of a function describing a diffusion–convection phenomenon in two dimensions (here said tidal mode), which is subjected in a very natural way to the same equation used in physics, introducing a contextual diffusivity concept: it is shown that with two different assumptions about diffusivity, solutions of this equation, evaluated at the present time, fit well with the data interpolated by \(\mathcal {G}\), thus providing two convincing different pictures of diffusion–convection in the case under study, albeit simplifications and approximations. Very importantly, it is shown that the linguistic diffusion model known to linguists as Schmidt ‘waves’ can be counted among the solutions of the diffusion equation: to look also at more general then the present study case, superimposing Schmidt ‘waves’ generated at different due times and localities and with a ‘tidal linguistic flooding’ just around the main region of linguistic diffusion can reproduce complexities of real events, thus probing diffusivity assumptions based on historical, local cultural, social and geographical grounds. The present work is motivating a long term research plan, seeking answers to fundamental questions of linguistics as a science, which are recalled in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

This manuscript has freely available associated data in the data repository at the Eurac Research CLARIN Centre (ERCC) (http://hdl.handle.net/20.500.12124/46).

References

  1. M.A.K. Halliday, J. Webster, On Language and Linguistics (Continuum International Publishing Group, London, 2006)

    Google Scholar 

  2. A. Martinet, Elements of General Linguistics. Studies in General Linguistics (Faber, London, 1960)

    Google Scholar 

  3. R. Hickey, The Handbook of Language Contact (Wiley-Blackwell, Chichester, 2010)

    Book  Google Scholar 

  4. W. Labov, Transmission and diffusion. Language 83(2), 344–387 (2007)

    Article  Google Scholar 

  5. A. Padovan, A. Tomaselli, M. Bergstra, N. Corver, R. Etxepare, S. Dold, Minority languages in language contact situations: three case studies on language change. Us Wurk 65(3/4), 146–174 (2016)

    Google Scholar 

  6. J. Schmidt, Die Verwandtschäftsverhältnisse der indogermanischen Sprachen (Boehlau, Weimar, 1872)

    Google Scholar 

  7. D.J. Britain, Innovation diffusion in sociohistorical linguistics, in Handbook of Historical Sociolinguistics. ed. by J.M. Hernandez-Campoy, J.C. Conde-Silvestre (Wiley, Hoboken, 2012), pp.451–464

    Chapter  Google Scholar 

  8. H.J. Schmid, Diffusion, in The Dynamics of the Linguistic System: Usage, Conventionalization, and Entrenchment. (Oxford University Press, Oxford, 2020)

    Chapter  Google Scholar 

  9. J. Nerbonne, Measuring the diffusion of linguistic change. Philos. Trans. R. Soc. 365, 3821–3828 (2010). https://doi.org/10.1098/rstb.2010.0048

    Article  Google Scholar 

  10. H. Goebl, Dialectometry: a short overview of the principles and practice of quantitative classification of linguistic atlas data (1993), in Contributions to Quantitative Linguistics, ed. R. Kohler, B. Rieger B. (Kluwer, Dordrecht, 1984), pp. 277–315

  11. M. Wieling, J. Nerbonne, R.H. Baayen, Quantitative social dialectology: explaining linguistic variation geographically and socially. PLoS ONE 6, 9 (2011). https://doi.org/10.1371/journal.pone.0023613

    Article  Google Scholar 

  12. J. Chambers, P. Trudgill, Dialectology, Second edition. (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  13. W. Heeringa, J. Nerbonne, Dialect areas and dialect continua. Lang. Var. Change 13, 375–400 (2001)

    Article  Google Scholar 

  14. W. Kretzschmar Jr., Quantitative areal analysis of dialect features. Lang. Var. Change 8, 13–39 (1996)

    Article  Google Scholar 

  15. J. Séguy, La relation entre la distance spatiale et la distance lexicale. Rev. Linguist. Romane 35(138), 335–357 (1971)

    Google Scholar 

  16. W. Labov, The social motivation of a sound change. Word 19, 273–309 (1963)

    Article  Google Scholar 

  17. P. Trudgill, Dialects in Contact (Blackwell, Hoboken, 1986)

    Google Scholar 

  18. E. Bidese, A. Tomaselli, Language synchronization north and south of the Brenner Pass: modeling the continuum. STUF Lang. Typol. Univers. 74(1), 185–216 (2021). https://doi.org/10.1515/stuf-2021-1028

    Article  Google Scholar 

  19. A. Tomaselli, E. Bidese, Fortune and decay of lexical expletives in Germanic and Romance along the Adige river. Languages 8(1), 44 (2023). https://doi.org/10.3390/languages8010044

    Article  Google Scholar 

  20. D. Pescarini, Expletive subject clitics in northern Italo-Romance. Languages 7(4), 265 (2022). https://doi.org/10.3390/languages7040265

    Article  Google Scholar 

  21. E. Bidese, Sprachkontakt generativ, Volume 582 in the series Linguistische Arbeiten (2023). https://doi.org/10.1515/9783110765014

  22. https://python-visualization.github.io/folium/index.html

  23. J.S.J. Rey, D. Arribas-Bel, L.J. Wolf, Geographic Data Science with Python. https://geographicdata.science/book/intro.html

  24. https://jupyter.org/

  25. S. Rabanus, A. Kruijt, M. Tagliani et al., VinKo (Varieties in Contact) Corpus v1.1. Eurac Research CLARIN Centre. http://hdl.handle.net/20.500.12124/46 (2022)

  26. P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data. Comput. Aided Geom. Des. 1, 169 (1984)

    Article  MATH  Google Scholar 

  27. G. Farin, Triangular Bernstein-Bezier patches. Comput. Aided Geom. Des. 3, 83 (1986)

    Article  Google Scholar 

  28. https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate/CloughTocher2DInterpolator

  29. https://matplotlib.org/stable/tutorials/introductory/pyplot.html

  30. L. Boltzmann, Zur integration der diffusionsgleichung bei variabeln diffusionscoefficienten. Ann. Phys. 53, 959 (1894)

    Article  MATH  Google Scholar 

  31. Euregio (a cura di), Tirolo Alto Adige Trentino—Uno sguardo storico, Trento (2013). (ISBN 978-88-907860-2-0)

  32. A. Zieger, Storia del Trentino e dell’Alto Adige (1925)

  33. H. Obermair, Il notariato nello sviluppo della città e del suburbio di Bolzano nei secoli XII–XVI, in Andrea Giorgi et al. (a cura di). Milano, Giuffrè (2014), pp. 293–322

  34. J. Riedmann, Dieältesten Aufzeichnungen in italienischer Sprache in Südtirol, in Der Schlern, n. 52 (1978), pp. 15–27

  35. G. Cowan, Statistical Data Analysis (Clarendon Press, Oxford, 1998)

    Google Scholar 

  36. J. Crank, The Mathematics of Diffusion, 2nd edn. (Claredon Press, Oxford, 1975)

    MATH  Google Scholar 

  37. G. Nervadof, https://levelup.gitconnected.com/solving-2d-heat-equation-numerically-using-python-3334004aa01a

Download references

Acknowledgements

The author is very pleased to thank Ermenegildo Bidese of the Department of Humanities of the University of Trento for his invitation to consider the subject of metrical dialectology and for the subsequent collaboration, the result of which is the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Lazzizzera.

Appendices

Appendix

A Some maths

2.1 A.1 The one-dimensional approximation of the diffusion equation

By its very definition the gradient of a function is in fact the directional derivative along a gradient line. Denoting by \(\vec {\gamma }:\mathbb {R}\rightarrow \mathcal {M}\) a gradient line over the (geographic) map \(\mathcal {M}\), by \(\vec {u}(s)\) the tangent versor to \(\vec {\gamma }\) in s and with \(D_{\vec {u}(s)}\) the directional derivative along \(\vec {u}(s)\), one has

$$\begin{aligned} \vec {\nabla } \mathfrak {G}(\gamma (s)) \,=\, \vec {u}(s)\, D_{\vec {u}(s)} \mathfrak {G} (\vec {\gamma }(s)) = \vec {u}(s)\, (\frac{d}{ds} \mathfrak {G} \circ \vec {\gamma })(s). \end{aligned}$$
(37)

The parameter \(s \in \mathbb {R}\) will be distance (in Km) along \(\vec {\gamma }\) from a start point on the contour line of level 0.9. From Eq. (4) one obtains

$$\begin{aligned} - \,(\eta \circ \vec {\gamma })(s)\; \frac{d}{ds} (\mathfrak {G} \circ \gamma )(s) \,=\, \vec {u}\,\cdot \, \Phi (\vec {\gamma }(s))\,=\, (\left| \vec {\Phi }\right| \circ \vec {\gamma })(s). \end{aligned}$$
(38)

Introducing

$$\begin{aligned} \mathcal {G}_\gamma (s) :=(\mathfrak {G} \circ \vec {\gamma })(s), \quad \varphi _\gamma (s) :=(\left| \vec {\Phi } \right| \circ \vec {\gamma })(s), \quad \eta _\gamma (s) :=\left( \eta \circ \vec {\gamma }\right) (s), \end{aligned}$$
(39)

Eq. (38) is written as

$$\begin{aligned} - \eta _\gamma \,\frac{d\mathcal {G}_\gamma }{ds}(s)\, =\, \varphi _\gamma (s), \end{aligned}$$
(40)

and Eq. (4) as

$$\begin{aligned} \frac{\partial \mathfrak {G}_\gamma }{\partial t}(s) = \vec {\nabla } \cdot \left( \eta _\gamma (s)\, \vec {u}(s)\, \frac{\hbox {d}\mathfrak {G}_\gamma }{\hbox {d}s}(s) \right). \end{aligned}$$
(41)

Assuming \(\vec {\gamma }\) almost a straight line, that is \(\vec {u}\) almost a constant, one has

$$\begin{aligned} \frac{\partial \mathfrak {G}_\gamma }{\partial t}(s)&\,=\, \vec {u}(s)\cdot \vec {\nabla } \left( \eta _\gamma (s)\,\frac{\hbox {d}\mathfrak {G}_\gamma }{\hbox {d}s}(s)\right) \, +\, \eta _\gamma (s)\,\frac{\hbox {d}\mathfrak {G}_\gamma }{\hbox {d}s}(s)\;(\vec {\nabla } \cdot \vec {u}) \end{aligned}$$
(42)
$$\begin{aligned}&\,\approx \, \vec {u}(s)\cdot \vec {\nabla } \left( \eta _\gamma (s)\,\frac{\hbox {d}\mathfrak {G}_\gamma }{\hbox {d}s}(s)\right) \, =\, \frac{d}{ds}\left( \eta _\gamma (s)\,\frac{\hbox {d}\mathfrak {G}_\gamma }{\hbox {d}s}(s)\right) \,. \end{aligned}$$
(43)

2.2 A.2 The error function complement

From Eq. (9), with \(\eta\) constant, one has

$$\begin{aligned} -\,2\,\frac{z}{\eta }\,\frac{\hbox {d}\mathcal {G}}{\hbox {d}z} \,=\, \frac{\hbox {d}^{2}\mathcal {G}}{\hbox {d}z^{2}} \end{aligned}$$

and consequently

$$\begin{aligned} -\,2\,\zeta \,\frac{\hbox {d}\mathcal {G}}{\hbox {d}\zeta } \,=\, \frac{\hbox {d}^{2}\mathcal {G}}{\hbox {d}\zeta ^{2}}, \qquad \zeta = \frac{s}{2\,\sqrt{\eta \,t}}, \end{aligned}$$

or

$$\begin{aligned} -\,2\,\zeta \,=\, \frac{\hbox {d}}{\hbox {d}\zeta }\left( \ln \left( \frac{\hbox {d}\mathcal {G}}{\hbox {d}\zeta }\right) \right), \end{aligned}$$

hence

$$\begin{aligned} \frac{\hbox {d}\mathcal {G}}{\hbox {d}\zeta } \,=\, \mathcal {C}\, e^{-\zeta ^2}, \end{aligned}$$

thus

$$\begin{aligned} \mathcal {G}(s,\,t) \,=\, A \,+\, \mathcal {C}\,\int _0^{\;s/(2\,\sqrt{\eta \,t})} \textrm{d} u\; e^{-u^2}. \end{aligned}$$

Imposing

$$\begin{aligned} 1&\,=\, \lim _{s\rightarrow -\infty }\mathcal {G}(s,\,t\ne 0) \,=\, A - \mathcal {C}\,\frac{\sqrt{\pi }}{2},\\ 0&\,=\, \lim _{s\rightarrow +\infty }\mathcal {G}(s,\,t\ne 0) \,=\, A + \mathcal {C}\,\frac{\sqrt{\pi }}{2},\\ \end{aligned}$$

one gets

$$\begin{aligned} \mathcal {G}(s,\,t) \,=\, \frac{1}{2}\, \left( 1 \,-\,\frac{2}{\sqrt{\pi }}\,\int _0^{\;s/(2\,\sqrt{\eta \,t})}\textrm{d} u\;e^{-u^2}\right) \,\equiv \, \frac{1}{2}\,{{\,\textrm{erfc}\,}}{\left( \frac{s}{2\,\sqrt{\eta \,t}}\right) }, \end{aligned}$$

thus proportional to the function known in literature as error function complement (\({{\,\textrm{erfc}\,}}\)).

It is to be noted that for \(s>0\) as \(t\rightarrow 0^+\) this function approximate more and more the step Heaviside distribution.

Notice that \(\mathcal {G}(0,\,t\ne 0) = 1/2\).

2.3 A.3 Obtaining solutions of the diffusion–convection equation from solutions of the pure diffusion equation

Let

$$\begin{aligned} -\,2\,z\,\frac{\hbox {d}g}{\hbox {d}z} \,=\, \frac{\hbox {d}}{\hbox {d}z}\left( \eta \,\frac{\hbox {d}g}{\hbox {d}z} \right). \end{aligned}$$
(44)

If

$$\begin{aligned} g=g\left( \frac{s-s_0}{2\sqrt{t}}\right) \qquad \text {and} \quad z\equiv \frac{s-s_0}{2\sqrt{t}}, \end{aligned}$$

using the chain rule of the derivatives, one has

$$\begin{aligned} \frac{\partial g}{\partial t} \,=\, \frac{\partial }{\partial t}\left( \frac{s -s_0}{2\sqrt{t}}\right) \; \frac{\hbox {d}g}{\hbox {d}z}\,=\, \frac{1}{4t} \left( -2z\,\frac{\hbox {d}g}{\hbox {d}z}\right) \,=\, \frac{1}{4t}\, \frac{\hbox {d}}{\hbox {d}z}\left( \eta \,\frac{\hbox {d}g}{\hbox {d}z} \right) \,=\, \frac{\partial }{\partial s}\left( \eta \,\frac{\partial g}{\partial s}\right). \end{aligned}$$

If instead

$$\begin{aligned} g = g\left( \frac{s -s_0 - \lambda \,f(t/\tau )}{2\sqrt{t}}\right) \qquad \text {and} \quad z\equiv \, \frac{s -s_0 - \lambda \,f(t/\tau )}{2\sqrt{t}}, \end{aligned}$$
(45)

where \(\lambda\) and \(\tau\) are, respectively, a length and a time constant parameters, one has

$$\begin{aligned} \frac{\partial g}{\partial t}&\,=\, \frac{\partial }{\partial t}\left( \frac{s -s_0 -\lambda \,f(t/\tau )}{2\sqrt{t}}\right) \; \frac{\hbox {d}g}{\hbox {d}z}\,=\, \frac{\partial }{\partial t}\left( \frac{s -s_0}{2\sqrt{t}}-\frac{\lambda }{2\,\sqrt{t}}\,f(t/\tau )\right) \; \frac{\hbox {d}g}{\hbox {d}z} \\&\,=\,\left( - \frac{s -s_0}{4t\sqrt{t}} \right) \;\frac{\hbox {d}g}{\hbox {d}z} \,+\, \frac{\lambda }{4\,t\,\sqrt{t}}\,f(t/\tau ) \;\frac{\hbox {d}g}{\hbox {d}z}\,-\, \frac{\lambda }{\tau }\,\frac{1}{2\,\sqrt{t}} \,\left. \frac{\hbox {d}f(t')}{\hbox {d}t'}\right| _{t'= t/\tau }\,\;\frac{\hbox {d}g}{\hbox {d}z} \\&\,=\, \left( - \frac{s -s_0 - \lambda \,f(t/\tau )}{4t\sqrt{t}} \right) \;\frac{\hbox {d}g}{\hbox {d}z} \,-\, \frac{\lambda }{\tau }\, \left. \frac{\hbox {d}f(t')}{\hbox {d}t'}\right| _{t'= t/\tau }\,\;\,\frac{1}{2\,\sqrt{t}}\,\frac{\hbox {d}g}{\hbox {d}z} \\&\,=\, \frac{1}{4t}\left( -2z\,\frac{\hbox {d}g}{\hbox {d}z}\right) \,-\, \frac{\lambda }{\tau }\left. \frac{\hbox {d}f(t')}{\hbox {d}t'}\right| _{t'= t/\tau }\,\frac{\partial g}{\partial s}\\&\,=\,\frac{1}{4t}\frac{\hbox {d}}{\hbox {d}z}\left( \eta \,\frac{\hbox {d}g}{\hbox {d}z}\right) \,-\, \frac{\lambda }{\tau }\left. \frac{\hbox {d}f(t')}{\hbox {d}t'}\right| _{t'= t/\tau }\,\frac{\partial g}{\partial s}\\&\,=\, \frac{\partial }{\partial s}\left( \eta \,\frac{\partial g}{\partial s}\right) \,-\, \frac{\lambda }{\tau }\left. \frac{\hbox {d}f(t')}{\hbox {d}t'}\right| _{t'= t/\tau }\,\frac{\partial g}{\partial s}\,. \end{aligned}$$

Thus

$$\begin{aligned} \frac{\partial g}{\partial t} \,=\, \frac{\partial }{\partial s}\left( \eta \,\frac{\partial g}{\partial s}\right) \,-\, \frac{\lambda }{\tau }\,\left. \frac{\hbox {d}f(t')}{\hbox {d}t'}\right| _{t'= t/\tau }\,\frac{\partial g}{\partial s}, \end{aligned}$$
(46)

Taking, for example,

$$\begin{aligned} f\left( \frac{t}{\tau }\right) = \frac{t}{\tau } \end{aligned}$$

(45) becomes

$$\begin{aligned} g = g\left( \frac{s -s_0 - (\lambda /\tau )\,t}{2\,\sqrt{t}}\right), \end{aligned}$$
(47)

with convection term simply

$$\begin{aligned} v\,\frac{\partial g}{\partial s}. \end{aligned}$$
(48)

In this case the gradient front progresses at the constant speed \(v= \lambda /\tau\).

As a different, instructive example, one sets

$$\begin{aligned} f\left( t/\tau \right) \,=\,\frac{t}{\tau }\, \exp \left\{ \frac{\tau }{\theta }\,\left( 1\,-\,\frac{t}{\tau }\right) \right\} \end{aligned}$$
(49)

for which the convection term changes to

$$\begin{aligned} \frac{\lambda }{\tau }\, \left( 1\,-\,\frac{t}{\theta }\right) \, \exp \left\{ \frac{\tau }{\theta }\,\left( 1\,-\,\frac{t}{\tau }\right) \right\}. \end{aligned}$$
(50)

In this second case, for \(t\ll \tau\), f has approximately has approximately the same growth as in the previous choice, however bending to flatten until \(t= \theta \, (\theta > \tau )\), where it begins to decrease: in view of (45) this means that the gradient front initially progresses at a speed approximately constant, then slows down, stops and finally slowly begins to regress.

2.4 A.4 Searching the diffusivity function for data-driven shapes

As shown above, the data suggest some possible functional laws of \(\mathcal {G}(z)\). The problem is to check whether there is a diffusivity function that allows Eq. (9) to have such function as a solution.

Taking indeed

$$\begin{aligned} \eta (z ; \mathcal {G}(z)) \,=\, 2\;\left( \frac{\hbox {d}\mathcal {G}(z)}{\hbox {d}z}\right) ^{-1}\, \int _0^z \!\textrm{d} \xi \,\xi \,\frac{\hbox {d}\mathcal {G}(\xi )}{\hbox {d}\xi }, \end{aligned}$$
(51)

in the domain of z where the above is well defined, it follows

$$\begin{aligned}&\frac{\hbox {d}}{\hbox {d}z}\left( \left[ 2\;\left( \frac{\hbox {d}\mathcal {G}(z)}{\hbox {d}z}\right) ^{-1}\,\int _0^z \!\textrm{d} \xi \,\xi \, \frac{\hbox {d}\mathcal {G}(\xi )}{\hbox {d}\xi }\right] \,\left( \frac{\hbox {d}\mathcal {G}(z)}{\hbox {d}z}\right) \right) \,=\,\,2\,\frac{\hbox {d}}{\hbox {d}z}\left( \int _0^z \!\textrm{d} x\,x\,\frac{\textrm{d} \mathcal {G}(z)}{\textrm{d} x} \right) \\&\quad = 2\,z\, \frac{\textrm{d} \mathcal {G}(z)}{\textrm{d} z}, \end{aligned}$$

because in the first term of the chain of equalities \((\text{d}\mathcal {G}/\text{d}z)^{-1}\) and \(\text{d}\mathcal {G}/\text{d}z\) elide each other.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzizzera, I. Founding a mathematical diffusion model in linguistics: the case study of German syntactic features in the North-Eastern Italian dialects. Eur. Phys. J. Plus 138, 833 (2023). https://doi.org/10.1140/epjp/s13360-023-04498-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04498-w

Navigation