Log in

Accelerating universe via entropic models

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we propose new entropic force models by utilizing the non-extensive Tsallis entropy with a dimensionless parameter \(\lambda \), which quantifies non-extensivity, and the Barrow entropy with quantum-gravitational deformation, which is quantified by a free parameter \(\Delta \). We consider the universe as a sphere covered by the Hubble horizon. We have defined the Bekenstein entropy and Hawking temperature on the Hubble horizon by using the idea of Hawking and Bekenstein. We investigate the cosmological consequences of the proposed entropic force models and study the late time accelerating expansion of the universe. Although these models can describe the late time acceleration of the universe and the parameters \(\lambda \) and \(\Delta \) show satisfactory behavior by themselves. The parameter \(\lambda \), and \(\Delta \) ranges \(0\le \lambda \le 1\) and \(0<\Delta \le 1\). This will be done by usnig the non-additive Tsallis entropy and Barrow entropy. In addition, the comparative analysis between Tsallis and Barrow for single-fluid dominated universe is also discussed. We investigate that the expansion of the universe is uniform as it was for the cases for Bekenstein and dark energy. Tsallis and Barrow entropy will be reduced to Bekenstein entropy for the certain limits of \(\lambda \) and \(\Delta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statements

No data was used for the research described in the article.

References

  1. S. Perlmutter et al., Nature (London) 391, 51 (1998)

    Article  ADS  Google Scholar 

  2. P.A.R. Ade et al., Astron. Astrophys. 594, A13 (2016)

    Article  Google Scholar 

  3. J.D. Barrow, D.J. Shaw, Phys. Rev. Lett. 106, 101302 (2011)

    Article  ADS  Google Scholar 

  4. I. Prigogine, J. Geheniau, E. Gunzig, P. Nardone, Proc. Natl. Acad. Sci. U.S.A. 85, 7428 (1988)

    Article  ADS  Google Scholar 

  5. J.A.S. Lima, R.C. Santos, J.V. Cunha, J. Cosmol. Astropart. Phys. 03, 027 (2016)

    Article  ADS  Google Scholar 

  6. J.P. Mimoso, D. Pavón, Phys. Rev. D 87, 047302 (2013)

    Article  ADS  Google Scholar 

  7. A. Gómez- Valent, J. Solà, J.S. Basilakos, Cosmol. Astropart. Phys. 13, 40 (2015)

    Google Scholar 

  8. Q. Wang, Z. Zhu, W.G. Unruh, Phys. Rev. D 95, 103504 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  10. R. Bousso, Rev. Mod. Phys. 74, 825 (2002)

    Article  ADS  Google Scholar 

  11. A. Sheykhi, Phys. Rev. D 81, 104011 (2010)

    Article  ADS  Google Scholar 

  12. S. Mitra, S. Saha, S. Chakraborty, Mod. Phys. Lett. A 30, 1550058 (2015)

    Article  ADS  Google Scholar 

  13. D.A. Easson, P.H. Frampton, G.F. Smoot, Phys. Lett. B 696, 273 (2011)

    Article  ADS  Google Scholar 

  14. T.S. Koivisto, D.F. Mota, M. Zumalacárregui, J. Cosmol. Astropart. Phys. 02, 027 (2011)

    Article  ADS  Google Scholar 

  15. N. Komatsu, S. Kimura, Phys. Rev. D 87, 043531 (2013)

    Article  ADS  Google Scholar 

  16. N. Komatsu, S. Kimura, Phys. Rev. D 92, 043507 (2015)

    Article  ADS  Google Scholar 

  17. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Padmanabhan, ar**v:1206.4916 [hep-th]

  19. T. Padmanabhan, Res. Astron. Astrophys. 12, 891 (2012)

    Article  ADS  Google Scholar 

  20. A. Sheykhi, M.H. Dehghani, S.E. Hosseini, Phys. Lett. B 726, 23 (2013)

    Article  ADS  Google Scholar 

  21. S. Chakraborty, T. Padmanabhan, Phys. Rev. D 92, 104011 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. T. Padmanabhan, Mod. Phys. Lett. A 30, 1540007 (2015)

    Article  ADS  Google Scholar 

  23. Z.-L. Wang, W.-Y. Ai, H. Chen, J.-B. Deng, Phys. Rev. D 92, 024051 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Fei-Quan, Y.-X. Chen, Gen. Relat. Gravit. 47, 87 (2015)

    Article  ADS  Google Scholar 

  25. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161–170 (1973)

    Article  ADS  Google Scholar 

  26. C. Tsallis, L. J. L. Cirto, Eur. Phys. J. C 73 (2013)

  27. J. Ren, JHEP 05, 080 (2021)

    Article  ADS  Google Scholar 

  28. A. Rényi, in Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, University of California Press (1960), pp. 547–556

  29. M. Naeem, J. Ahmed, A. Bibi, Eur. Phys. J. Plus 137, 962 (2022)

    Article  Google Scholar 

  30. C. Tsallis, J. Statist. Phys. 52(12), 479–487 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.D. Barrow, Phys. Lett. B 808, 135643 (2020)

    Article  MathSciNet  Google Scholar 

  32. A. Sayahian Jahromi, S.A. Moosavi, H. Moradpour, J.P. Morais Graca, I.P. Lobo, I.G. Salako, A. Jawad, Phys. Lett. B 780, 21–24 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Kaniadakis, Phys. Rev. E 72, 036108 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Nojiri, S.D. Odintsov, V. Faraoni, Phys. Rev. D 104, 084030 (2021)

    Article  ADS  Google Scholar 

  35. S.K. Modak, D. Singleton, Phys. Rev. D 86, 123515 (2012)

    Article  ADS  Google Scholar 

  36. S.K. Modak, D. Singleton, Int. J. Mod. Phys. D 21, 1242020 (2012)

    Article  ADS  Google Scholar 

  37. L. Parker, Phys. Rev. Lett. 21, 562 (1968)

    Article  ADS  Google Scholar 

  38. I. Prigogine, J. Geheniau, E. Gunzig et al., Gen. Relat. Gravit. 21, 767–776 (1989)

    Article  ADS  Google Scholar 

  39. S.W. Hawking, G.T. Horowitz, Class. Quant. Grav. 13, 1487 (1996)

    Article  ADS  Google Scholar 

  40. S. Weinberg, Rev. Mod. Phys. 61 (1989)

  41. S.M. Carroll, Living Rev. Relat. 4, 56 (2001)

    Google Scholar 

  42. S.N. Komatsu, Kimura Evolution of the universe in entropic cosmologies via different formulations. Phys. Rev. D 89, 123501 (2014)

    Article  ADS  Google Scholar 

  43. J. Solá, J. Phys Conf. Ser. 453, 012015 (2013)

    Article  Google Scholar 

  44. D.A. Easson, P.H. Frampton, G.F. Smoot, Int. J. Mod. Phys. A 27 (2012)

  45. S.I. Nojiri, S.D. Odintsov , V. Faraoni, ar**v preprint ar**v:2201.02424 (2022)

  46. G. Leon et al., JCAP 12 (2021)

  47. D. Gennaro et al. ar**v preprint ar**v:2207.09271 (2022)

  48. Saridakis, N. Emmanuel et al., JCAP 12 (2018)

  49. E. Verlinde, J. High Energy Phys. 04, 029 (2011)

    Article  ADS  Google Scholar 

  50. A.G. Riess et al., Supernova search team collaboration. Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  51. E.N. Saridakis, Modified cosmology through spacetime thermodynamics and Barrow horizon entropy. ar**v:2006.01105 [gr-qc]

  52. F.K. Anagnostopoulos, S. Basilakos, E.N. Saridakis, Observational constraints on Barrow holographic dark energy. ar**v:2005.10302 [gr-qc]

  53. A. Lymperis, E.N. Saridakis, Eur. Phys. J. C 78, 993 (2018)

    Article  ADS  Google Scholar 

  54. E.M.C. Abreu, J.A. Neto, E.M. Barboza, Eur. Phys. Lett. 130, 40005 (2020)

    Article  ADS  Google Scholar 

  55. T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  56. T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the anonymous reviewer for the fruitful comments to improve the quality of paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MN: Conceptualization, software, writing the original draft, formal analysis. AB: Conceptualization, formal analysis, revision and validation.

Corresponding author

Correspondence to Muhammad Naeem.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, M., Bibi, A. Accelerating universe via entropic models. Eur. Phys. J. Plus 138, 442 (2023). https://doi.org/10.1140/epjp/s13360-023-04073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04073-3

Navigation