Log in

Energy conditions in the f(RLT) theory of gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We construct the energy conditions for the recently proposed f(RLT) gravity theory, for which f is a generic function of the Ricci scalar R, matter Lagrangian density L and trace of the energy-momentum tensor T. We analyze two different forms for the f(RLT) function within the framework of the Friedmann-Lemâitre-Robertson-Walker universe. We constrain the model parameters from the energy conditions. This approach allows us to assess the feasibility of specific forms of the f(RLT) gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There are no new data associated with this article.

References

  1. A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R. Chris Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009–1038 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, The Supernova Cosmology Project, Measurements of \(\Omega\) and \(\Lambda\) from 42 High-Redshift Supernovae. Astrophys. J. 517(2), 565–586 (1999)

    Article  ADS  Google Scholar 

  3. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61(1), 1–23 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Einstein. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pp. 831–839, (1915)

  5. M. Trodden, Cosmic Acceleration and Modified Gravity. Int. J. Mod. Phys. D 16, 2065–2074 (2007)

    Article  ADS  Google Scholar 

  6. A. De Felice, S. Tsujikawa, \(f(R)\) Theories. Living Rev. Relativ. 13(1), 3 (2010)

    Article  ADS  Google Scholar 

  7. A.A. Starobinsky, Disappearing cosmological constant in \(f(R)\) gravity. JETP Lett. 86, 157–163 (2007)

    Article  ADS  Google Scholar 

  8. J. Wang, K. Liao, Energy conditions in \(f(R, L_{m})\) gravity. Class. Quantum Gravity 29(21), 215016 (2012)

    Article  ADS  Google Scholar 

  9. R. Solanki, Z. Hassan, P.K. Sahoo, Wormhole solutions in \(f(R,L_{m})\) gravity. Chin. J. Phys. 85, 74–88 (2023)

    Article  Google Scholar 

  10. H. Tiberiu, F.S.N. Lobo, S.I. Nojiri, S.D. Odintsov, \(f(R,T)\) gravity. Phys. Rev. D 84(2), 024020 (2011)

    Article  ADS  Google Scholar 

  11. Y.-F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, \(f(T)\) teleparallel gravity and cosmology. Rep. Prog. Phys. 79(10), 106901 (2016)

    Article  ADS  Google Scholar 

  12. S.-H. Chen, J.B. Dent, S. Dutta, E.N. Saridakis, Cosmological perturbations in \(f(T)\) gravity. Phys. Rev. D 83(2), 023508 (2011)

    Article  ADS  Google Scholar 

  13. J.B. Jiménez, L. Heisenberg, T. Koivisto, S. Pekar, Cosmology in \(f(Q)\) geometry. Phys. Rev. D 101(10), 103507 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Mandal, D. Wang, P.K. Sahoo, Cosmography in \(f(Q)\) gravity. Phys. Rev. D 102(12), 124029 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  15. X. Yixin, G. Li, T. Harko, S.-D. Liang, \(f(Q, T)\) gravity. Euro. Phys. J. C 79(8), 708 (2019)

    ADS  Google Scholar 

  16. S. Bhattacharjee, P.K. Sahoo, Baryogenesis in \(f(Q,T)\) gravity. Euro. Phy. J. C 80(3), 289 (2020)

    Article  ADS  Google Scholar 

  17. A. Nájera, A. Fajardo, Cosmological perturbation theory in \(f(Q, T)\) gravity. J. Cosmol. Astropart. Phys. 2022(3), 020 (2022)

    Article  MathSciNet  Google Scholar 

  18. S. Arora, P.K. Sahoo, Energy conditions in \(f(Q,T)\) gravity. Phys. Scr. 95(9), 095003 (2020)

    Article  ADS  Google Scholar 

  19. S. Arora, J.R.L. Santos, P.K. Sahoo, Constraining f (q, t) gravity from energy conditions. Phys. Dark Univ. 31, 100790 (2021)

    Article  Google Scholar 

  20. M. Visser, Cosmography: Cosmology without the Einstein equations. Gen. Relativ. Gravit. 37(9), 1541–1548 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  21. B.S. Sathyaprakash, B.F. Schutz, C. Van Den Broeck, Cosmography with the Einstein Telescope. Class. Quantum Gravity 27(21), 215006 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  22. J.A.S. Fortunato, W.S. Hipólito-Ricaldi, M.V. dos Santos, Cosmography from well-localized fast radio bursts. Mon. Not. R. Astron. Soc. 526(2), 1773–1782 (2023)

    Article  ADS  Google Scholar 

  23. Z. Haghani, T. Harko, Generalizing the coupling between geometry and matter: \(f(R, L_{m}, T)\) gravity. Euro. Phys. J. C 81(7), 615 (2021)

    Article  ADS  Google Scholar 

  24. F.J. Tipler, Energy conditions and spacetime singularities. Phys. Rev. D 17(10), 2521–2528 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  25. M.S. Morris, K.S. Thorne, U. Yurtsever, Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61(13), 1446–1449 (1988)

    Article  ADS  Google Scholar 

  26. S. Mandal, P.K. Sahoo, J.R.L. Santos, Energy conditions in \(f(Q)\) gravity. Phys. Rev. D 102(2), 024057 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  27. T. Harko, F.S.N. Lobo, \(f(R, L_{m})\) gravity. Euro. Phys. J. C 70(1–2), 373–379 (2010)

    Article  ADS  Google Scholar 

  28. T. Harko, Thermodynamic interpretation of the generalized gravity models with geometry-matter coupling. Phys. Rev. D 90(4), 044067 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  29. S.I. dos Santos, G.A. Carvalho, P.H.R.S. Moraes, C.H. Lenzi, M. Malheiro, A conservative energy-momentum tensor in the f(R, T) gravity and its implications for the phenomenology of neutron stars. Euro. Phys. J. Plus 134(8), 398 (2019)

    Article  Google Scholar 

  30. S.M. Carroll, An introduction to general relativity: spacetime and geometry. Addison Wesley 101, 102 (2004)

    ADS  Google Scholar 

  31. S. Kar, S. Sengupta, The raychaudhuri equations: a brief review. Pramana 69, 49–76 (2007)

    Article  ADS  Google Scholar 

  32. S. Capozziello, F.S.N. Lobo, J.P. Mimoso, Generalized energy conditions in extended theories of gravity. Phys. Rev. D 91(12), 124019 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  33. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 2023)

    Book  Google Scholar 

  34. S. Capozziello, M. de Laurentis, Extended Theories of Gravity. Phys. Rep. 509(4), 167–321 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  35. S. Capozziello, F.S.N. Lobo, J.P. Mimoso, Energy conditions in modified gravity. Phys. Lett. B 730, 280–283 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Capozziello, S. Nojiri, S.D. Odintsov, The role of energy conditions in f (r) cosmology. Phys. Lett. B 781, 99–106 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Sharif, M. Zubair, Energy conditions in f ( R, T, R \(_{ {\mu }{\nu } }\) T \(^{ {\mu }{\nu } }\)) gravity. J. High Energy Phys. 2013, 79 (2013)

    Article  Google Scholar 

  38. M. Sharif, S. Rani, R. Myrzakulov, Analysis of \(f(r, t)\) gravity models through energy conditions. Euro. Phys. J. Plus 128, 1–11 (2013)

    Article  Google Scholar 

  39. F.G. Alvarenga, M.J.S. Houndjo, A.V. Monwanou, J.B.C. Orou, Testing some \(f(r, t)\) gravity models from energy conditions. J. Mod. Phys. 4, 130–139 (2013)

    Article  Google Scholar 

  40. J. Santos, J.S. Alcaniz, M.J. Reboucas, F.C. Carvalho, Energy conditions in \(f(r)\) gravity. Phys. Rev. D 76(8), 083513 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  41. J. Santos, M.J. Rebouças, J.S. Alcaniz, Energy conditions constraints on a class of \(f(r)\)-gravity. Int. J. Mod. Phys. D 19(08n10), 1315–1321 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  42. C.S. Santos, J. Santos, S. Capozziello, J.S. Alcaniz, Strong energy condition and the repulsive character of \(f(r)\) gravity. Gen. Relativ. Gravit. 49, 1–14 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Visser, Jerk, snap and the cosmological equation of state. Class. Quantum Gravity 21(11), 2603 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  44. I.S. Farias, P.H.R.S. Moraes, Using cosmographic energy conditions to constrain \(f(R, T)\) gravity models. Euro. Phys. J. Plus 138(5), 469 (2023)

    Article  Google Scholar 

  45. D. Benndorf, J.F. Jesus, S.H. Pereira, Determination of the kinematic parameters from SNe ia and cosmic chronometers. Euro. Phys. J. C 82(5), 1–14 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

PHRSM would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for partial financial support. PKS acknowledges the Science and Engineering Research Board, Department of Science and Technology, Government of India, for financial support to carry out the Research project No.: CRG/2022/001847. We are very much grateful to the honorable referee and to the editor for the illuminating suggestions that have significantly improved our work in terms of research quality, and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sahoo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Moraes, P.H.R.S. & Sahoo, P.K. Energy conditions in the f(RLT) theory of gravity. Eur. Phys. J. Plus 139, 542 (2024). https://doi.org/10.1140/epjp/s13360-024-05346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05346-1

Navigation