Log in

Formalism for power spectral density estimation for non-identical and correlated noise using the null channel in Einstein Telescope

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 23 May 2023

This article has been updated

Abstract

Several proposed gravitational wave interferometers have a triangular configuration, such as the Einstein Telescope and the Laser Interferometer Space Antenna. For such a configuration one can construct a unique null channel insensitive to gravitational waves from all directions. We expand on earlier work and describe how to use the null channel formalism to estimate the power spectral density for the Einstein Telescope interferometers with non-identical as well as correlated noise sources. The formalism is illustrated with two examples in the context of the Einstein Telescope, with increasing degrees of complexity and realism. By using known mixtures of noises we show the formalism is mathematically correct and internally consistent. Finally we highlight future research needed to use this formalism as an ingredient for a Bayesian estimation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.]

Change history

Notes

  1. The null channel is also known as the null stream or Sagnac channel.

  2. Note that we have chosen to also give a lower index n to the spectral density of the T channel to indicate it only depends on noise terms and is insensitive to GWs.

  3. This design is often also referred to as ET-D.

  4. The PSD of the ET noise \(S_n^{\textrm{ET}}\) is not to be confused with the CSD of correlating the T and E channels, i.e., \(S_n^{TE}\).

  5. The expected coherence for uncorrelated data goes approximately as 1/N, where N is the number of time segments over which the coherence is averaged.

  6. 300–500m is the expected distance between the terminal and central stations of two different ET interferometers [32].

References

  1. M. Punturo, The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quant. Grav. 27, 194002 (2010). https://doi.org/10.1088/0264-9381/27/19/194002

    Article  ADS  Google Scholar 

  2. D. Reitze, RX. Adhikari, S. Ballmer, B. Barish, L. Barsotti, G. Billingsley, D.A. Brown, Y. Chen, C D. oyne, R. Eisenstein, M. Evans, P. Fritschel, E.D. Hall, A. Lazzarini, G. Lovelace, J. Read, B.S. Sathyaprakash, D. Shoemaker, J. Smith, C. Torrie, S. Vitale, R. Weiss, C. Wipf, M. Zucker. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. Bulletin of the AAS 51(7) (2019).https://baas.aas.org/pub/2020n7i035

  3. M. Evans, et al.: A horizon study for cosmic explorer: science, observatories, and community (2021) ar**v:2109.09882 [astro-ph.IM]

  4. J. Aasi, Advanced LIGO. Classical Quant. Gravity 32(7), 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001

    Article  ADS  Google Scholar 

  5. F. Acernese, Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav. 32(2), 024001 (2015) ar**v:1408.3978 [gr-qc]. https://doi.org/10.1088/0264-9381/32/2/024001

  6. Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, H. Yamamoto, Interferometer design of the kagra gravitational wave detector. Phys. Rev. D 88, 043007 (2013). https://doi.org/10.1103/PhysRevD.88.043007

    Article  ADS  Google Scholar 

  7. S. Hild, Sensitivity studies for third-generation gravitational wave observatories. Class. Quant. Grav. 28, 094013 (2011) ar**v:1012.0908 [gr-qc]. https://doi.org/10.1088/0264-9381/28/9/094013

  8. P. Amaro-Seoane, et al.: Laser interferometer space antenna. ar**v e-prints, 1702–00786 (2017) ar**v:1702.00786 [astro-ph.IM]

  9. S. Sato, The status of DECIGO. J. Phys.: Conf. Series 840, 012010 (2017). https://doi.org/10.1088/1742-6596/840/1/012010

    Article  Google Scholar 

  10. J. Luo, TianQin: a space-borne gravitational wave detector. Class. Quant. Grav. 33(3), 035010 (2016) ar**v:1512.02076 [astro-ph.IM]. https://doi.org/10.1088/0264-9381/33/3/035010

  11. T. Regimbau, T. Dent, W. Del Pozzo, S. Giampanis, T.G.F. Li, C. Robinson, C. Van Den Broeck, D. Meacher, C. Rodriguez, B.S. Sathyaprakash, K. Wójcik, Mock data challenge for the Einstein gravitational-wave telescope. Phys. Rev. D 86, 122001 (2012). https://doi.org/10.1103/PhysRevD.86.122001

    Article  ADS  Google Scholar 

  12. T. Regimbau, S.A. Hughes, Gravitational-wave confusion background from cosmological compact binaries: implications for future terrestrial detectors. Phys. Rev. D 79, 062002 (2009). https://doi.org/10.1103/PhysRevD.79.062002

    Article  ADS  Google Scholar 

  13. K. Janssens, G. Boileau, N. Christensen, F. Badaracco, N. van Remortel, Impact of correlated seismic and correlated newtonian noise on the Einstein Telescope. Phys. Rev. D 106, 042008 (2022). https://doi.org/10.1103/PhysRevD.106.042008

    Article  ADS  Google Scholar 

  14. K. Janssens, K. Martinovic, N. Christensen, P.M. Meyers, M. Sakellariadou, Impact of schumann resonances on the Einstein Telescope and projections for the magnetic coupling function. Phys. Rev. D 104, 122006 (2021). https://doi.org/10.1103/PhysRevD.104.122006

    Article  ADS  Google Scholar 

  15. K. Janssens, M. Ball, R.M.S. Schofield, N. Christensen, R. Frey, N. van Remortel, S. Banagiri, M.W. Coughlin, A. Effler, M. Gołkowski, J. Kubisz, M. Ostrowski, Correlated 1-1000 Hz magnetic field fluctuations from lightning over earth-scale distances and their impact on gravitational wave searches (2022). https://doi.org/10.48550/ARXIV.2209.00284. https://arxiv.org/abs/2209.00284

  16. G. Boileau, N. Christensen, R. Meyer, Figures of merit for a stochastic gravitational-wave background measurement by LISA: implications of LISA Pathfinder noise correlations. ar**v e-prints, 2204–03867 (2022) ar**v:2204.03867 [gr-qc]

  17. Y. Gürsel, M. Tinto, Near optimal solution to the inverse problem for gravitational-wave bursts. Phys. Rev. D 40, 3884–3938 (1989). https://doi.org/10.1103/PhysRevD.40.3884

    Article  ADS  Google Scholar 

  18. L. Wen, B.F. Schutz, Coherent network detection of gravitational waves: the redundancy veto. Class. Quant. Gravity 22(18), 1321–1335 (2005). https://doi.org/10.1088/0264-9381/22/18/s46

    Article  ADS  MATH  Google Scholar 

  19. L. Wen, X. Fan, Y. Chen, Geometrical expression of the angular resolution of a network of gravitational-wave detectors and improved localization methods. J. Phys.: Conf. Series 122, 012038 (2008). https://doi.org/10.1088/1742-6596/122/1/012038

    Article  Google Scholar 

  20. L. Wen, Y. Chen, Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Phys. Rev. D 81, 082001 (2010). https://doi.org/10.1103/PhysRevD.81.082001

    Article  ADS  Google Scholar 

  21. P.J. Sutton, X-Pipeline: An Analysis package for autonomous gravitational-wave burst searches. New J. Phys. 12, 053034 (2010) ar**v:0908.3665 [gr-qc]. https://doi.org/10.1088/1367-2630/12/5/053034

  22. M. Tinto, S.V. Dhurandhar (2005) Time-delay interferometry. Living Rev. Relativity,https://doi.org/10.12942/lrr-2005-4

  23. T.L. Smith, R.R. Caldwell, LISA for cosmologists: calculating the signal-to-noise ratio for stochastic and deterministic sources. Phys. Rev. D 100, 104055 (2019). https://doi.org/10.1103/PhysRevD.100.104055

    Article  ADS  Google Scholar 

  24. I.C.F. Wong, T.G.F. Li, Signal space in the triangular network of the Einstein Telescope. Phys. Rev. D 105(8), 084002 (2022) ar**v:2108.05108 [gr-qc]. https://doi.org/10.1103/PhysRevD.105.084002

  25. B. Goncharov, A.H. Nitz, J. Harms, Utilizing the null stream of the Einstein Telescope. Phys. Rev. D 105, 122007 (2022). https://doi.org/10.1103/PhysRevD.105.122007

    Article  ADS  MathSciNet  Google Scholar 

  26. M.R. Adams, N.J. Cornish, Discriminating between a stochastic gravitational wave background and instrument noise. Phys. Rev. D 82, 022002 (2010). https://doi.org/10.1103/PhysRevD.82.022002

    Article  ADS  Google Scholar 

  27. M.R. Adams, Detecting a stochastic gravitational wave background with space-based interferometers (2014)

  28. G. Boileau, N, Christensen, R. Meyer, N.J. Cornish, Spectral separation of the stochastic gravitational-wave background for LISA: observing both cosmological and astrophysical backgrounds. Phys. Rev. D 103(10), 103529 (2021) ar**v:2011.05055 [gr-qc]. https://doi.org/10.1103/PhysRevD.103.103529

  29. G. Boileau, A. Lamberts, N. Christensen, N.J. Cornish, R. Meyer, Spectral separation of the stochastic gravitational-wave background for LISA in the context of a modulated Galactic foreground. Monthly Notices of the Royal Astronomical Society 508(1), 803–826 (2021) ar**v:2105.04283 [gr-qc]. https://doi.org/10.1093/mnras/stab2575

  30. G. Boileau, A.C. Jenkins, M. Sakellariadou, R. Meyer, N. Christensen, Ability of LISA to detect a gravitational-wave background of cosmological origin: The cosmic string case. Phys. Rev. D 105(2), 023510 (2022) ar**v:2109.06552 [gr-qc]. https://doi.org/10.1103/PhysRevD.105.023510

  31. Q. Baghi, J.I. Thorpe, J. Slutsky, J. Baker, Statistical inference approach to time-delay interferometry for gravitational-wave detection. Phys. Rev. D 103, 042006 (2021). https://doi.org/10.1103/PhysRevD.103.042006

    Article  ADS  MathSciNet  Google Scholar 

  32. ET Steering Committee Editorial Team: design Report Update 2020 for the Einstein telescope (2020) ET-0007B-20

  33. T. Callister, A.S. Biscoveanu, N. Christensen, M. Isi, A. Matas, O. Minazzoli, T. Regimbau, M. Sakellariadou, J. Tasson, E. Thrane, Polarization-based Tests of Gravity with the Stochastic Gravitational-Wave Background. Phys. Rev. X 7(4), 041058 (2017) ar**v:1704.08373 [gr-qc]. https://doi.org/10.1103/PhysRevX.7.041058

  34. T.A. Prince, M. Tinto, S.L. Larson, J.W. Armstrong, Lisa optimal sensitivity. Phys. Rev. D 66, 122002 (2002). https://doi.org/10.1103/PhysRevD.66.122002

    Article  ADS  Google Scholar 

  35. B. Allen, J.D. Romano, Detecting a stochastic background of gravitational radiation: signal processing strategies and sensitivities. Phys. Rev. D 59, 102001 (1999). https://doi.org/10.1103/PhysRevD.59.102001

    Article  ADS  Google Scholar 

  36. J.D. Romano, N.J. Cornish, Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Rev. Rel. 20(1), 2 (2017) ar**v:1608.06889 [gr-qc]. https://doi.org/10.1007/s41114-017-0004-1

  37. N. Christensen, Measuring the stochastic gravitational-radiation background with laser-interferometric antennas. Phys. Rev. D 46, 5250–5266 (1992). https://doi.org/10.1103/PhysRevD.46.5250

    Article  ADS  Google Scholar 

  38. T. Regimbau,The astrophysical gravitational wave stochastic background. Res. Astron. Astrophys. 11, 369–390 (2011) ar**v:1101.2762 [astro-ph.CO]. https://doi.org/10.1088/1674-4527/11/4/001

  39. T. Regimbau, The quest for the astrophysical gravitational-wave background with terrestrial detectors. Symmetry (2022). https://doi.org/10.3390/sym14020270

    Article  Google Scholar 

  40. R.Abbott, Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run. Phys. Rev. D 104(2), 022004 (2021) ar**v:2101.12130 [gr-qc]. https://doi.org/10.1103/PhysRevD.104.022004

  41. L. Naticchioni, Characterization of the Sos Enattos site for the Einstein telescope. J. Phys. Conf. Ser. 1468(1), 012242 (2020). https://doi.org/10.1088/1742-6596/1468/1/012242

    Article  Google Scholar 

  42. R. Romero, Radio waves below 22 kHz. http://www.vlf.it/

  43. F. Amann, Site-selection criteria for the Einstein telescope. Rev. Sci. Instrum. 91(9), 9 (2020) ar**v:2003.03434 [physics.ins-det]. https://doi.org/10.1063/5.0018414

  44. W.O. Schumann, Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Zeitschrift Naturforschung Teil A 7, 149–154 (1952). https://doi.org/10.1515/zna-1952-0202

    Article  ADS  MATH  Google Scholar 

  45. W.O. Schumann, Über die Dämpfung der elektromagnetischen Eigenschwingungen des Systems Erde - Luft - Ionosphäre. Zeitschrift Naturforschung Teil A 7, 250–252 (1952). https://doi.org/10.1515/zna-1952-3-404

    Article  ADS  MATH  Google Scholar 

  46. I. Fiori et al., The hunt for environmental noise in virgo during the third observing run. Galaxies (2020). https://doi.org/10.3390/galaxies8040082

    Article  Google Scholar 

  47. M.C. Edwards, R. Meyer, N. Christensen, Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis. Phys. Rev. D 92, 064011 (2015). https://doi.org/10.1103/PhysRevD.92.064011

    Article  ADS  Google Scholar 

  48. N. Christensen, Meyer, R.: Parameter estimation with gravitational waves. Rev. Mod. Phys. 94(2), 025001 (2022) ar**v:2204.04449 [gr-qc]. https://doi.org/10.1103/RevModPhys.94.025001

  49. E. Thrane, N. Christensen, R. Schofield, Correlated magnetic noise in global networks of gravitational-wave interferometers: observations and implications. Phys. Rev. D 87, 123009 (2013) ar**v:1303.2613 [astro-ph.IM]. https://doi.org/10.1103/PhysRevD.87.123009

  50. E.Thrane, N. Christensen, R.M.S. Schofield, Effler, A. Correlated noise in networks of gravitational-wave detectors: subtraction and mitigation. Phys. Rev. D 90(2), 023013 (2014) ar**v:1406.2367 [astro-ph.IM]. https://doi.org/10.1103/PhysRevD.90.023013

  51. M.W. Coughlin , Subtraction of correlated noise in global networks of gravitational-wave interferometers. Class. Quant. Grav. 33(22), 224003 (2016) ar**v:1606.01011 [gr-qc]. https://doi.org/10.1088/0264-9381/33/22/224003

  52. Y. Himemoto, A. Taruya, Impact of correlated magnetic noise on the detection of stochastic gravitational waves: Estimation based on a simple analytical model. Phys. Rev. D 96(2), 022004 (2017) ar**v:1704.07084 [astro-ph.IM]. https://doi.org/10.1103/PhysRevD.96.022004

  53. M.W. Coughlin, Measurement and subtraction of Schumann resonances at gravitational-wave interferometers. Phys. Rev. D 97(10), 102007 (2018) ar**v:1802.00885 [gr-qc]. https://doi.org/10.1103/PhysRevD.97.102007

  54. Y. Himemoto, A. Taruya, Correlated magnetic noise from anisotropic lightning sources and the detection of stochastic gravitational waves. Phys. Rev. D 100(8), 082001 (2019) ar**v:1908.10635 [astro-ph.IM]. https://doi.org/10.1103/PhysRevD.100.082001

  55. P.M. Meyers, K. Martinovic, N. Christensen, M. Sakellariadou, Detecting a stochastic gravitational-wave background in the presence of correlated magnetic noise. Phys. Rev. D 102(10), 102005 (2020) ar**v:2008.00789 [gr-qc]. https://doi.org/10.1103/PhysRevD.102.102005

  56. B.P. Abbott, Search for tensor, vector, and scalar polarizations in the stochastic gravitational-wave background. Phys. Rev. Lett. 120, 201102 (2018). https://doi.org/10.1103/PhysRevLett.120.201102

    Article  ADS  Google Scholar 

  57. L. Amalberti, N. Bartolo, A. Ricciardone, Sensitivity of third-generation interferometers to extra polarizations in the stochastic gravitational wave background. Phys. Rev. D 105, 064033 (2022). https://doi.org/10.1103/PhysRevD.105.064033

    Article  ADS  MathSciNet  Google Scholar 

  58. H. Takeda, A. Nishizawa, K. Nagano, Y. Michimura, K. Komori, M. Ando, K. Hayama, Prospects for gravitational-wave polarization tests from compact binary mergers with future ground-based detectors. Phys. Rev. D 100, 042001 (2019). https://doi.org/10.1103/PhysRevD.100.042001

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge access to computational resources provided by the LIGO Laboratory supported by National Science Foundation Grant Nos. PHY-0757058 and PHY-0823459. GB thanks the laboratory Artemis, Observatoire de la Côte d’Azur, for hospitality and welcome. Furthermore, the authors would like to thank Q. Baghi, B. Goncharov, S. Shah and O. Hartwig for useful comments. This paper has been given LIGO DCC number P2200126, Virgo TDS number VIR-0443A-22 and ET TDS number ET-0066A-22. K.J. is supported by FWO-Vlaanderen via Grant No. 11C5720N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamiel Janssens.

Additional information

The original online version of this article was revised to correct affiliation 3 to Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France.

Appendices

Appendix A: Antenna pattern functions for tensorial gravitational waves

We follow the description of the ET’s triangle of Fig. 1 from [11] but interferometer indices 1,2,3 become X,Y,Z.

We introduce the orthogonal triad in the transverse trace less form as \((\mathbf {e_x}, \mathbf {e_y}, \mathbf {e_z})\), which allows us to write the basis polarization tensors:

$$\begin{aligned} \begin{aligned} {\textbf{e}}_+&= \mathbf {e_x} \otimes \mathbf {e_x} - \mathbf {e_y} \otimes \mathbf {e_y} \\ {\textbf{e}}_{\times }&= \mathbf {e_x} \otimes \mathbf {e_y} + \mathbf {e_y} \otimes \mathbf {e_x} \end{aligned} \end{aligned}$$
(19)

with \({\textbf{h}} = h_+{\textbf{e}}_+ + h_+{\textbf{e}}_{\times }\) and \(h_+, h_{\times }\) the tensor plus-, respectively cross-polarization components.

The symmetric trace-free tensors representing the three ET interferometers are given by:

$$\begin{aligned} {d}^X&= \frac{1}{2}\mathbf {e_1} \otimes \mathbf {e_1} - \mathbf {e_2} \otimes \mathbf {e_2} \\ {d}^Y&= \frac{1}{2}\mathbf {e_2} \otimes \mathbf {e_2} - \mathbf {e_3} \otimes \mathbf {e_3} \\ {d}^Z&= \frac{1}{2}\mathbf {e_3} \otimes \mathbf {e_3} - \mathbf {e_1} \otimes \mathbf {e_1} \end{aligned}$$
(20)

with the basis of the three arms of the ET’s configuration given by \({\textbf{e}}_1;{\textbf{e}}_2;{\textbf{e}}_3 = \frac{1}{2}(\sqrt{3},-1,0); \frac{1}{2}(\sqrt{3},1,0); (0,1,0)\).

For each interferometer (\(I = X,Y,Z\)), the interferometer response \(h^I(f)\) is given by the product between the detector tensor \({\textbf{d}}^I\) and the tensor \({\textbf{h}}\):

$$\begin{aligned} \begin{aligned} h^I(t)&= d^I_{ij}h^{ij} = d^I_{ij}e_+^{ij}h_+ + d^I_{ij}e_{\times }^{ij}h_{\times } \\&= F_+^I h_+ + F_+^{\times } h_{\times } \end{aligned} \end{aligned}$$
(21)

with \(F^I_p\) the antenna pattern function of interferometer I for a GW with polarization p.

According to [11], it is possible to write the unit vector of the basis (xyz) in the radiation frame. We introduce the polarization angle \(\psi\) as \(\cos \psi = {\textbf{e}}_{\theta } \cdot {\textbf{e}}_x\), so, we can write the antenna pattern function as a function of the sky position \((\theta , \phi )\). For example, the antenna pattern function of the interferometer X is:

$$\begin{aligned} \begin{aligned} F_{+}^X&= \frac{-\sqrt{3}}{4}\Big [\big ( 1 + \cos ^2 \theta \big ) \sin 2\phi \cos 2\psi + 2 \cos \theta \cos 2\phi \sin 2\psi \Big ] \\&= \alpha (\theta ,\phi )\cos 2\psi + \beta (\theta ,\phi )\sin 2\psi \\ F_{\times }^X&= \frac{\sqrt{3}}{4}\Big [\big ( 1 + \cos ^2 \theta \big ) \sin 2\phi \sin 2\psi - 2 \cos \theta \cos 2\phi \cos 2\psi \Big ] \\&= -\alpha (\theta ,\phi )\sin 2\psi + \beta (\theta ,\phi )\cos 2\psi , \end{aligned} \end{aligned}$$
(22)

where we have defined \(\alpha (\theta ,\phi ) = -\frac{\sqrt{3}}{4} \big ( 1 + \cos ^2 \theta \big ) \sin 2\phi\) and \(\beta (\theta ,\phi ) = -\frac{\sqrt{3}}{2} \cos \theta \cos 2\phi\). It is possible, given the equilateral triangle configuration, to calculate the antenna pattern function of the interferometer Y and Z as a rotation of \(2\pi /3\). This is given by changing the angle \(\phi\) such that \(\phi \longrightarrow \phi +\frac{2\pi }{3}\) for Y arm and \(\phi \longrightarrow \phi -\frac{2\pi }{3}\) for Z arm.

$$\begin{aligned} \begin{aligned}&F_{p}^Y(\theta , \phi , \psi ) = F_{p}^X(\theta , \phi +\frac{2\pi }{3}, \psi ) \\&F_{p}^Z(\theta , \phi , \psi ) = F_{p}^X(\theta , \phi -\frac{2\pi }{3}, \psi ) \\ \end{aligned} \end{aligned}$$
(23)

with the polarization, \(p = +, \times\). We can also write \(\sum _p (F^X_p)^2\):

$$\begin{aligned} \begin{aligned} (F_{+}^X)^2 + (F_{\times }^X)^2&= (\alpha \cos 2\psi + \beta \sin 2\psi )^2 \\&\quad + (-\alpha \sin 2\psi + \beta \cos 2\psi )^2 \\&= \alpha ^2 + \beta ^2 \\&= \frac{3}{16} \Big [\big ( 1 + \cos ^2 \theta \big )^2 \sin ^2 2\phi + 4 \cos ^2\theta \cos ^2 2\phi \Big ] \end{aligned} \end{aligned}$$
(24)

We assume that the noise and GWs are not correlated. The PSD of the X channel is given by

$$\begin{aligned} \begin{aligned} \langle X(f) X^*(f^{\prime })\rangle&= \langle n^X(f) n^{X*}(f^{\prime })\rangle + \langle d^X_{ij} h^{ij}(f) (d^X_{ij}h^{ij}(f^{\prime }))^*\rangle \\&=\frac{1}{2}\delta (f-f^{\prime })S_n^X + \left\langle \sum _p F^X_p h_p \left( \sum _{p\prime } F^X_{p\prime } h_{p\prime }\right) ^* \right\rangle \\&= \frac{1}{2}\delta (f-f^{\prime }) S_n^X + \left\langle \sum _p \left( F_p^X h_p\right) ^2 \right\rangle , \\&= \frac{1}{2}\delta (f-f^{\prime }) \left[ S_n^X + \sum _p S_{h_p} \int _{sky} \left( F_p^X\right) ^2 \right] , \\ \end{aligned} \end{aligned}$$
(25)

where \(S_X\) is the noise PSD of interferometer X and \(S_{h_p}\) the PSD of the GW signal for an isotropic SGWB present with polarization p.

According to Eq. 25, we can calculate the antenna patterns over the sky:

$$\begin{aligned} \begin{aligned} \int _{sky} \left( F_+^X\right) ^2 + \left( F_{\times }^X\right) ^2&= \frac{1}{4\pi ^2}\int _{0}^{\pi } \int _{0}^{2\pi } \int _{0}^{\pi } \sin \theta {\textrm{d}}\theta {\textrm{d}}\phi {\textrm{d}}\psi \Big [\left( F_+^X\right) ^2 + \left( F_{\times }^X\right) ^2 \Big ] \\&= \frac{1}{4\pi ^2} \frac{6\pi ^2}{5}\\&= \frac{3}{10} \end{aligned} \end{aligned}$$
(26)

The calculation for the Y and Z arms is identical and redundant. We can thus write:

$$\begin{aligned} \begin{aligned} \int _{sky} \left( F_+^X\right) ^2 + \left( F_{\times }^X\right) ^2&= \int _{sky} \left( F_+^Y\right) ^2 + \left( F_{\times }^Y\right) ^2 \\&= \int _{sky} \left( F_+^Z\right) ^2 + \left( F_{\times }^Z\right) ^2= \frac{3}{10} \end{aligned} \end{aligned}$$
(27)

It is also possible to calculate the cross arm integration of the pattern antenna. We can notice first that we can write:

$$\begin{aligned} \left( F_{+}^XF_{+}^Y\right) + \left( F_{\times }^XF_{\times }^Y\right)&= \left( \alpha \cos 2\psi + \beta \sin 2\psi \right) \left( \alpha '\cos 2\psi + \beta '\sin 2\psi \right) \\&\quad + \left( -\alpha \cos 2\psi + \beta \sin 2\psi \right) \left( -\alpha '\cos 2\psi + \beta '\sin 2\psi \right) \\&= \alpha \alpha ' + \beta \beta ' \\&= \frac{3}{16} \Big [\big ( 1 + \cos ^2 \theta \big )^2 \sin 2\phi \sin 2\phi ' \\&\quad + 4 \cos ^2\theta \cos 2\phi \cos 2\phi ' \Big ] \end{aligned}$$
(28)

with \(\alpha ' = \alpha (\theta ,\phi +\frac{2\pi }{3})\), \(\beta ' = \beta (\theta ,\phi +\frac{2\pi }{3})\) and \(\phi ' = \phi +\frac{2\pi }{3}\)

we can calculate the antenna patterns over the sky:

$$\begin{aligned} \begin{aligned} \int _{sky} (F_{\times }^XF_{\times }^Y) + (F_{+}^XF_{+}^Y)&= \frac{1}{4\pi ^2}\int _{0}^{\pi } \int _{0}^{2\pi } \int _{0}^{\pi }\sin \theta \textrm{d}\theta \textrm{d}\phi \textrm{d}\psi \Big [(F_{\times }^XF_{\times }^Y) + (F_{+}^XF_{+}^Y) \Big ] \\&= \frac{1}{4\pi ^2} \frac{-3\pi ^2}{5} = -\frac{3}{20} \end{aligned} \end{aligned}$$
(29)

The calculation for the (XZ) and (YZ) arms is also identical and redundant. We can thus write:

$$\begin{aligned} \int _{sky} (F_{\times }^XF_{\times }^Y) + (F_{+}^XF_{+}^Y)&= \int _{sky} (F_{\times }^XF_{\times }^Z)+ (F_{+}^XF_{+}^Z) \\&= \int _{sky} (F_{\times }^YF_{\times }^Z) + (F_{+}^YF_{+}^Z)\\&= -\frac{3}{20} \end{aligned}$$
(30)

We can summarize the contribution of an isotropic SGWB to each channel according to the Eq. 8:

$$\begin{aligned} \begin{aligned} \left<X(f)X^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^X(f) + \frac{3}{10}S_h(f)\right] \\ \left<A(f)A^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^A(f) + \frac{9}{20}S_h(f)\right] \\ \left<E(f)E^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^E(f)+ \frac{9}{20}S_h(f)\right] \\ \left<A(f)E^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^{AE}(f) + 0S_h(f)\right] \\ \end{aligned} \end{aligned}$$
(31)

Appendix B: Antenna pattern functions for non-GR polarization gravitational waves

The non-GR polarization can also be defined from the orthogonal triad \((\mathbf {e_x}, \mathbf {e_y}, \mathbf {e_z})\) [56]. We define two other kind of polarization, the vector (xy) and scalar (bl) modes [57, 58].

$$\begin{aligned} \begin{aligned} {\textbf{e}}_x&= \mathbf {e_x} \otimes \mathbf {e_z}+ \mathbf {e_z} \otimes \mathbf {e_x} \\ {\textbf{e}}_y&= \mathbf {e_y} \otimes \mathbf {e_z} + \mathbf {e_z} \otimes \mathbf {e_y} \end{aligned} \end{aligned}$$
(32)

and

$$\begin{aligned} \begin{aligned} {\textbf{e}}_b&= \mathbf {e_x} \otimes \mathbf {e_x}+ \mathbf {e_y} \otimes \mathbf {e_y} \\ {\textbf{e}}_l&= \mathbf {e_z} \otimes \mathbf {e_z} \end{aligned} \end{aligned}$$
(33)

For interferometer X, the antenna pattern of the non-GR modes are given by,

  • Vector modes:

    $$\begin{aligned} \begin{aligned} F^x\left( \theta , \phi , \psi \right)&=\frac{-\sqrt{3}}{2}\sin \theta \left[ \cos \theta \cos \psi \sin 2\phi +\sin \psi \cos 2\phi \right] \\ F^y\left( \theta , \phi , \psi \right)&=\frac{\sqrt{3}}{2}\sin \theta \left[ \cos \theta \sin \psi \sin 2\phi -\cos \psi \cos 2\phi \right] \\ \end{aligned} \end{aligned}$$
    (34)
  • Scalar modes:

    $$\begin{aligned} \begin{aligned} F^b(\theta , \phi )&=\frac{\sqrt{3}}{4}\sin ^2\theta \sin 2\phi \\ F^l(\theta , \phi )&=\frac{-\sqrt{3}}{4}\sin ^2\theta \sin 2\phi \\ \end{aligned} \end{aligned}$$
    (35)

The integration over the sky for differences configuration are:

  • Vector modes:

    $$\begin{aligned} \begin{aligned} \int _{sky} \left( F_x^X\right) ^2 + \left( F_y^X\right) ^2&= \int _{sky} \left( F_x^Y\right) ^2 + \left( F_y^Y\right) ^2 \\ {}&= \int _{sky} \left( F_x^Z\right) ^2 + \left( F_y^Z\right) ^2 = \frac{3}{10} \\ \int _{sky} \left( F_y^XF_y^Y\right) + \left( F_x^XF_x^Y\right)&= \int _{sky} \left( F_y^XF_y^Z\right) + \left( F_x^XF_x^Z\right) \\ {}&= \int _{sky} \left( F_y^YF_y^Z\right) + \left( F_x^YF_x^Z\right) = -\frac{-3}{20} \end{aligned} \end{aligned}$$
    (36)
  • Scalar modes:

    $$\begin{aligned} \begin{aligned} \int _{sky} (F_b^X)^2 + (F_l^X)^2&= \int _{sky} (F_b^Y)^2 + (F_l^Y)^2 \\&= \int _{sky} (F_b^Z)^2 + (F_l^Z)^2= \frac{1}{10} \\ \int _{sky} (F_l^XF_l^Y) + (F_b^XF_b^Y)&= \int _{sky} (F_l^XF_l^Z) + (F_b^XF_b^Z) \\&= \int _{sky} (F_b^YF_b^Z) + (F_l^YF_l^Z)= -\frac{-1}{20} \end{aligned} \end{aligned}$$
    (37)

We can summarize the contribution from an isotropic SGWB to each channel for the different polarizations:

  • Vector modes:

    $$\begin{aligned} \begin{aligned} \left<X(f)X^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^X(f) + \frac{3}{10}S_h(f)\right] \\ \left<A(f)A^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^A(f) + \frac{9}{20}S_h(f)\right] \\ \left<E(f)E^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^E(f) + \frac{9}{20}S_h(f)\right] \\ \left<A(f)E^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^{AE}(f) + 0S_h(f)\right] \\ \end{aligned} \end{aligned}$$
    (38)
  • Scalar modes:

    $$\begin{aligned} \begin{aligned} \left<X(f)X^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^X(f) + \frac{1}{10}S_h(f)\right] \\ \left<A(f)A^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^A(f) + \frac{3}{20}S_h(f)\right] \\ \left<E(f)E^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^E(f) + \frac{3}{20}S_h(f)\right] \\ \left<A(f)E^*(f')\right>&= \frac{1}{2}\delta (f-f')\left[ S_n^{AE}(f) + 0S_h(f)\right] \\ \end{aligned} \end{aligned}$$
    (39)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssens, K., Boileau, G., Bizouard, MA. et al. Formalism for power spectral density estimation for non-identical and correlated noise using the null channel in Einstein Telescope. Eur. Phys. J. Plus 138, 352 (2023). https://doi.org/10.1140/epjp/s13360-023-03948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03948-9

Navigation