Log in

Spherical photon orbits around a rotating black hole with quintessence and cloud of strings

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we calculate the analytical solutions for the radii of planar and polar spherical photon orbits around a rotating black hole that is associated with quintessential field and cloud of strings. This includes a full analytical treatment of a quintic that describes orbits on the equatorial plane. Furthermore, The radial profile of the impact parameters is studied and the radii corresponding to the extreme cases are derived. For the more general cases, we also discuss the photon regions that form around this black hole. To simulate the orbits that appear in different inclinations, we analytically solve the latitudinal and azimuth equations of motion in terms of the Weierstraßian elliptic functions, by considering the radii of spherical orbits, in their general form, as the initial conditions. The period and the stability conditions of the orbits are also obtained analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No Data associated in the manuscript.

Notes

  1. Note that, the r-constant photonic surfaces, instead of being spherical, are indeed spheroidal. This has been discussed for example in Ref. [50]. On the other hand, the term spherical orbits refers directly to every single photon orbit with constant radial distance from the black hole, and is commonly used in the literature.

References

  1. B.L. Webster, P. Murdin, Cygnus X-1-a Spectroscopic binary with a heavy companion? Nature 235, 37–38 (1972)

    Article  ADS  Google Scholar 

  2. C.T. Bolton, Identification of Cygnus X-1 with HDE 226868. Nature 235, 271–273 (1972)

    Article  ADS  Google Scholar 

  3. K. Akiyama et al., First M87 event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875(1), L4 (2019)

    Article  ADS  Google Scholar 

  4. K. Akiyama et al., First sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the milky way. Astrophys. J. Lett. 930, L12 (2022)

    Article  ADS  Google Scholar 

  5. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–370 (1972)

    Article  ADS  Google Scholar 

  6. J. Bardeen, Timelike and null geodesics in the Kerr metric, In Les Houches Summer School of Theoretical Physics: Black Holes, pp. 215–240, (1973)

  7. S. Chandrasekhar, The mathematical theory of black holes. Oxford classic texts in the physical sciences, Oxford University Press, (1998)

  8. E. Stoghianidis, D. Tsoubelis, Polar orbits in the Kerr space-time. Gen. Relativ. Gravit. 19, 1235–1249 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. C.R. Cramer, Using the uncharged Kerr black hole as a gravitational mirror. Gen. Relativ. Gravit. 29, 445–454 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. Teo, Spherical photon orbits around a Kerr black hole. Gen. Relativ. Gravit. 35, 1909–1926 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. T. Johannsen, Photon rings around Kerr and Kerr-like black holes. Astrophys. J. 777, 170 (2013)

    Article  ADS  Google Scholar 

  12. A. Grenzebach, V. Perlick, C. Lämmerzahl, Photon regions and shadows of Kerr-Newman-nut black holes with a cosmological constant. Phys. Rev. D 89, 124004 (2014)

    Article  ADS  Google Scholar 

  13. V. Perlick, O.Y. Tsupko, Light propagation in a plasma on Kerr spacetime: separation of the hamilton-jacobi equation and calculation of the shadow. Phys. Rev. D 95, 104003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Charbulák, Z. Stuchlík, Spherical photon orbits in the field of Kerr naked singularities. Eur. Phys. J. C 78, 879 (2018)

    Article  ADS  Google Scholar 

  15. M.D. Johnson, A. Lupsasca, A. Strominger, G.N. Wong, S. Hadar, D. Kapec, R. Narayan, A. Chael, C.F. Gammie, P. Galison, D.C.M. Palumbo, S.S. Doeleman, L. Blackburn, M. Wielgus, D.W. Pesce, J.R. Farah, J.M. Moran, Universal interferometric signatures of a black hole’s photon ring. Sci. Adv. 6, eaaz1310 (2020)

    Article  ADS  Google Scholar 

  16. E. Himwich, M.D. Johnson, A. Lupsasca, A. Strominger, Universal polarimetric signatures of the black hole photon ring. Phys. Rev. D 101, 084020 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. Z. Gelles, E. Himwich, M.D. Johnson, D.C.M. Palumbo, Polarized image of equatorial emission in the kerr geometry. Phys. Rev. D 104, 044060 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Ayzenberg, Testing gravity with black hole shadow subrings. Classical Quantum Gravit 39, 105009 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Das, A. Saha, S. Gangopadhyay, Study of circular geodesics and shadow of rotating charged black hole surrounded by perfect fluid dark matter immersed in plasma. Classical Quantum Gravit. 39, 075005 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. S. Hod, Spherical null geodesics of rotating Kerr black holes. Phys. Lett. B 718(4), 1552–1556 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Tavlayan, B. Tekin, Exact formulas for spherical photon orbits around kerr black holes. Phys. Rev. D 102, 104036 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.A. Jimenez Madrid, P.F. Gonzalez-Diaz, Evolution of a Kerr-newman black hole in a dark energy universe. Grav. Cosmol. 14, 213–225 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Jamil, Evolution of a Schwarzschild black hole in phantom-like Chaplygin gas cosmologies. Eur. Phys. J. C 62, 609–614 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. X.-Q. Li, B. Chen, L.-L. **ng, Charged lovelock black holes in the presence of dark fluid with a nonlinear equation of state. Eur. Phys. J. Plus 135(2), 175 (2020)

    Article  Google Scholar 

  25. R. Roy, U.A. Yajnik, Evolution of black hole shadow in the presence of ultralight bosons. Phys. Lett. B 803, 135284 (2020)

    Article  MathSciNet  Google Scholar 

  26. Z. Xu, X. Hou, X. Gong, J. Wang, Black hole space-time in dark matter halo. J. Cosmol. Astroparticle Phys. 2018, 038–038 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Das, A. Saha, S. Gangopadhyay, Investigation of circular geodesics in a rotating charged black hole in the presence of perfect fluid dark matter. Classical Quantum Gravit. 38, 065015 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. V.V. Kiselev, Quintessence and black holes. Classical Quantum Gravit. 20, 1187–1197 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. R. Saadati, F. Shojai, Bending of light in a universe filled with quintessential dark energy. Phys. Rev. D 100, 104041 (2019)

    Article  ADS  Google Scholar 

  30. I. Ali Khan, A. Sultan Khan, S. Islam, Dynamics of the particle around de sitter-schwarzschild black hole surrounded by quintessence. Int. J. Modern Phys. A 35(23), 2050130 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Stachel in Abstracts of Contributed Papers, 8th International Conference on General Relativity and Gravitation, (University of Waterloo, Ontario), p. 324, (1977)

  32. P.S. Letelier, Clouds of strings in general relativity. Phys. Rev. D 20, 1294–1302 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  33. P.D. Mannheim, D. Kazanas, Exact Vacuum Solution to Conformal Weyl Gravity and Galactic Rotation Curves. Astrophys. J. 342, 635 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  34. J.D.M. Toledo, V.B. Bezerra, Black holes with cloud of strings and quintessence in Lovelock gravity. Eur. Phys. J. C 78, 534 (2018)

    Article  ADS  Google Scholar 

  35. M. M. Diase Costa, J. M. Toledo, and V. B. Bezerra, The Letelier spacetime with quintessence: solution, thermodynamics and Hawking radiation. Int. J. Modern Phys. D 28, 1950074 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. J.M. Toledo, V.B. Bezerra, The Reissner-Nordström black hole surrounded by quintessence and a cloud of strings: thermodynamics and quasinormal modes. Int. J. Modern Phys. D 28, 1950023 (2019)

    Article  ADS  MATH  Google Scholar 

  37. J.M. Toledo, V.B. Bezerra, Kerr-Newman-AdS black hole with quintessence and cloud of strings. Gen. Relativ. Gravit. 52, 34 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. H. Wei, R.-G. Cai, A new model of agegraphic dark energy. Phys. Lett. B 660, 113–117 (2008)

    Article  ADS  Google Scholar 

  39. T. Matos, F.S. Guzmán, L.A. Ureña-López, D. Núñez, Scalar Field Dark Matter, in Exact Solutions and Scalar Fields in Gravity. ed. by A. Macias, J.L. Cervantes-Cota, C. Lämmerzahl (Kluwer Academic Publishers, Boston, 2002), pp.165–184

    Chapter  Google Scholar 

  40. B. Toshmatov, Z. Stuchlík, B. Ahmedov, Rotating black hole solutions with quintessential energy. Eur. Phys. J. Plus 132, 98 (2017)

    Article  MATH  Google Scholar 

  41. V.H. Cárdenas, M. Fathi, M. Olivares, J.R. Villanueva, Probing the parameters of a Schwarzschild black hole surrounded by quintessence and cloud of strings through four standard astrophysical tests. Eur. Phys. J. C 81, 866 (2021)

    Article  ADS  Google Scholar 

  42. G. Mustafa, I. Hussain, Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds. Eur. Phys. J. C 81, 419 (2021)

    Article  ADS  Google Scholar 

  43. M. Fathi, M. Olivares, and J. R. Villanueva, Study of null and time-like geodesics in the exterior of a Schwarzschild black hole with quintessence and cloud of strings, ar**v e-prints, p. ar**v:2205.13261, (2022)

  44. A. He, J. Tao, Y. Xue, and L. Zhang, Shadow and Photon Sphere of Black Hole in Clouds of Strings and Quintessence, Chin. Phys. C (2022)

  45. E.T. Newman, A.I. Janis, Note on the Kerr spinning-particle metric. J. Math. Phys. 6(6), 915–917 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. M. Azreg-Aïnou, Generating rotating regular black hole solutions without complexification. Phys. Rev. D 90, 064041 (2014)

    Article  ADS  Google Scholar 

  47. M. Calvani, R. Turolla, Complete description of photon trajectories in the Kerr-Newman space-time. J. Phys. A Math. Gen. 14, 1931–1942 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  48. E. Hackmann, C. Lämmerzahl, V. Kagramanova, J. Kunz, Analytical solution of the geodesic equation in Kerr-(anti-) de sitter space-times. Phys. Rev. D 81, 044020 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  49. E. Hackmann, H. Xu, Charged particle motion in Kerr-newmann space-times. Phys. Rev. D 87, 124030 (2013)

    Article  ADS  Google Scholar 

  50. R. Ferraro, Untangling the Newman-Janis algorithm. Gen. Relativ. Gravit. 46, 1705 (2014)

    Article  ADS  MATH  Google Scholar 

  51. B. Carter, Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  ADS  MATH  Google Scholar 

  52. Y. Mino, Perturbative approach to an orbital evolution around a supermassive black hole. Phys. Rev. D 67, 084027 (2003)

    Article  ADS  Google Scholar 

  53. R. Kumar, S.G. Ghosh, Rotating black holes in 4\(d\) einstein-gauss-bonnet gravity and its shadow. J. Cosmol. Astroparticle Phys. 2020, 053–053 (2020)

    Article  MathSciNet  Google Scholar 

  54. F.D. Ryan, Effect of gravitational radiation reaction on circular orbits around a spinning black hole. Phys. Rev. D 52, R3159–R3162 (1995)

    Article  ADS  Google Scholar 

  55. H.J. Mellin, Zur theorie zweier allgemeiner klassen bestimmter integrale. C. R. Acad. Sci. Paris Sér I. Math. 172, 658–661 (1921)

    Google Scholar 

  56. C. Hermite, Sur la résolution de l’équation du cinquème degré. Comptes Rendus de l’Académie des Sciences XLVI, 508–515 (1858)

    Google Scholar 

  57. F. Brioschi, Sul metodo di kronecker per la risoluzione delle equazioni di quinto grado. Atti Dell’i. R. Istituto Lombardo di Scienze, Lettere ed Arti 1, 275–282 (1858)

    Google Scholar 

  58. L. Kronecker, Sur la résolution de l’equation du cinquième degré, extrait d’une lettre adressé a m hermite. Comptes Rendus de l’Académie des Sci. XLVI, 1150–1152 (1858)

    Google Scholar 

  59. E. S. Bring, Meletamata quaedam mathematica circa transformationem aequationen algebraicarum, (Upsala, 170), (1786)

  60. E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd edn. (Chapman and Hall/CRC, Boca Raton, Florida, 2002)

    Book  MATH  Google Scholar 

  61. L.J. Slater, Generalized hypergeometric functions (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  62. G. Gyulchev, J. Kunz, P. Nedkova, T. Vetsov, S. Yazadjiev, Observational signatures of strongly naked singularities: image of the thin accretion disk. Eur. Phys. J. C 80, 1017 (2020)

    Article  ADS  Google Scholar 

  63. M. Fathi, M. Olivares, J.R. Villanueva, Analytical study of light ray trajectories in Kerr spacetime in the presence of an inhomogeneous anisotropic plasma. Eur. Phys. J. C 81, 987 (2021)

    Article  ADS  Google Scholar 

  64. P. Byrd, M. Friedman, Handbook of elliptic integrals for engineers and scientists (Springer-Verlag, Grundlehren der mathematischen Wissenschaften, 1971)

    Book  MATH  Google Scholar 

  65. M. Fathi, M. Olivares, J.R. Villanueva, Gravitational Rutherford scattering of electrically charged particles from a charged Weyl black hole. Eur. Phys. J. Plus 136(4), 420 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

M. Fathi has been supported by the Agencia Nacional de Investigación y Desarrollo (ANID) through DOCTORADO Grants No. 2019-21190382, and No. 2021-242210002. J.R. Villanueva was partially supported by the Centro de Astrofísica de Valparaíso (CAV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Fathi.

Appendices

Appendix A: Reduction of the quintic to the Bring–Jerrard form

Let us first recast the quintic (43) as

$$\begin{aligned} x^{5}+a_{1} x^{4} + a_{2} x^{3}+ a_{3} x^{2}+a_{4} x +a_{5} = 0, \end{aligned}$$
(A1)

by defining \(a_{j}=\bar{m}_{5}^{-1}{\bar{m}_{5-j}}\). We now proceed with transforming Eq. (A1) to the principal quintic form that is missing the \(x^{4}\) and \(x^{3}\) terms, by means of the quadratic Tschirnhausen transformation

$$\begin{aligned} y = x^{2}+b_{1} x + b_{2}. \end{aligned}$$
(A2)

Applying a simple code in the software Mathematica, we can eliminate x between Eqs. (A1) and (A2), which results in

$$\begin{aligned} y^{5}+c_{1}y^{4}+c_{2}y^{3}+c_{3}y^{2}+c_{4}y+c_{5}=0, \end{aligned}$$
(A3)

where

$$\begin{aligned}&c_{1} = a_{1} b_{1}-a_{1}^{2}+2 a_{2}-5 b_{2}, \end{aligned}$$
(A4a)
$$\begin{aligned}&c_{2} = 4 a_{1}^{2} b_{2}-a_{2} a_{1} b_{1}-4 a_{1} b_{1} b_{2}+a_{2} b_{1}^{2}+3 a_{3} b_{1}-8 a_{2} b_{2}-2 a_{3} a_{1}+a_{2}^{2}+2 a_{4}+10 b_{2}^{2},\end{aligned}$$
(A4b)
$$\begin{aligned}&c_{3} = a_{3} b_{1}^{3}-a_{1} a_{3} b_{1}^{2}+4 a_{4} b_{1}^{2}-3 a_{2} b_{2} b_{1}^{2}+6 a_{1} b_{2}^{2} b_{1}+a_{2} a_{3} b_{1}-3 a_{1} a_{4} b_{1}+5 a_{5} b_{1}+3 a_{1} a_{2} b_{2} b_{1}-9 a_{3} b_{2} b_{1}\nonumber \\&-6 a_{1}^{2} b_{2}^{2}+12 a_{2} b_{2}^{2}-3 a_{2}^{2} b_{2}+6 a_{1} a_{3} b_{2}-6 a_{4} b_{2}-a_{3}^{2}+2 a_{2} a_{4}-2 a_{1} a_{5}-10 b_{2}^{3},\end{aligned}$$
(A4c)
$$\begin{aligned}&c_{4} = a_{4} b_{1}^{4}-a_{1} a_{4} b_{1}^{3}+5 a_{5} b_{1}^{3}-2 a_{3} b_{2} b_{1}^{3}+3 a_{2} b_{2}^{2} b_{1}^{2}+a_{2} a_{4} b_{1}^{2}-4 a_{1} a_{5} b_{1}^{2}+2 a_{1} a_{3} b_{2} b_{1}^{2}-8 a_{4} b_{2} b_{1}^{2}-4 a_{1} b_{2}^{3} b_{1}\nonumber \\&-3 a_{1} a_{2} b_{2}^{2} b_{1}+9 a_{3} b_{2}^{2} b_{1}-a_{3} a_{4} b_{1}+3 a_{2} a_{5} b_{1}-2 a_{2} a_{3} b_{2} b_{1}+6 a_{1} a_{4} b_{2} b_{1}-10 a_{5} b_{2} b_{1}\nonumber \\&+4 a_{1}^{2} b_{2}^{3}-8 a_{2} b_{2}^{3}+3 a_{2}^{2} b_{2}^{2}-6 a_{1} a_{3} b_{2}^{2}+6 a_{4} b_{2}^{2}+2 a_{3}^{2} b_{2}-4 a_{2} a_{4} b_{2}+4 a_{1} a_{5} b_{2}+a_{4}^{2}-2 a_{3} a_{5}+5 b_{2}^{4},\end{aligned}$$
(A4d)
$$\begin{aligned}&c_5 = a_5 b_{1}^{5}-a_{1} a_5 b_{1}^{4}+a_{2} a_5 b_{1}^{3}-a_{3} a_5 b_{1}^{2}+a_{4} a_{5} b_{1}-a_5^{2}. \end{aligned}$$
(A4e)

The two unknowns \(b_{1,2}\) allow for the elimination of \(c_{1,2}\). In fact, one can see that the equations \(c_{1}=c_{2}=0\) result in two quadratics, solving which provide the values

$$\begin{aligned}&b_{1}={\frac{4 a_{1}^{3}-13 a_{2} a_{1}\pm \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}}{4 a_{1}^{2}-10 a_{2}}},\end{aligned}$$
(A5)
$$\begin{aligned}&b_{2} = {\frac{5 a_{2} a_{1}^{2}+\left( 15a_{3}\pm \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}\right) a_{1}-20 a_{2}^{2}}{20 a_{1}^{2}-50 a_{2}}}. \end{aligned}$$
(A6)

Applying these values in the coefficients in Eq. (), the quintic (A3) reduces to the principal form

$$\begin{aligned} y^{5}+\mathfrak {u}y^{2}+\mathfrak {v}y+\mathfrak {w}=0, \end{aligned}$$
(A7)

in which

$$\begin{aligned} \mathfrak {u}= &\, {} {\frac{1}{40 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{3}}}\left[ -90 \sqrt{5} a_{1} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{2}^{4}\right. \nonumber \\&\left. +48 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{1} \left( 2 a_{1}^{2}-5 a_{2}\right) a_{2}^{3}\right. \nonumber \\&\left. +1350 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{3} a_{2}^{3}\right. \nonumber \\&\left. -6 \sqrt{5} a_{1} \left( 2 a_{1}^{2}-5 a_{2}\right) ^{2} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{2}^{2}\right. \nonumber \\&\left. +320 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} \left( 5 a_{2}-2 a_{1}^{2}\right) a_{3} a_{2}^{2}\right. \nonumber \\&\left. -2700 \sqrt{5} a_{1} a_{3}^{2} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{2}\right. \nonumber \\&\left. -46 \sqrt{5} \left( 2 a_{1}^{2}-5 a_{2}\right) ^{2} a_{3} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{2}\right. \nonumber \\&\left. +280 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{1} \left( 5 a_{2}-2 a_{1}^{2}\right) a_{4} a_{2}\right. \nonumber \\&\left. +4500 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{3}^{3}\right. \nonumber \\&\left. +520 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{1} \left( 2 a_{1}^{2}-5 a_{2}\right) a_{3}^{2}\right. \nonumber \\&\left. +8 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} \left( 2 a_{1}^{2}-5 a_{2}\right) ^{3} a_{3}\right. \nonumber \\&\left. +675 \left( a_{2}^{6}-8 a_{1} a_{3} a_{2}^{4}+60 a_{3}^{2} a_{2}^{3}-80 a_{1} a_{3}^{3} a_{2}+100 a_{3}^{4}\right) +40 a_{1}^{2} \left( 2 a_{1}^{2}-5 a_{2}\right) ^{3} a_{4}\right. \nonumber \\&\left. +92 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} a_{1} \left( 2 a_{1}^{2}-5 a_{2}\right) ^{2} a_{4}\right. \nonumber \\&\left. +1400 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} \left( 2 a_{1}^{2}-5 a_{2}\right) a_{3} a_{4}\right. \nonumber \\&\left. +5 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{3} \left( a_{2}^{3}-26 a_{4} a_{2}+44 a_{3}^{2}\right) +135 \left( 2 a_{1}^{2}-5 a_{2}\right) \left( -3 a_{2}^{5}+20 \left( a_{1} a_{3}+a_{4}\right) a_{2}^{3}-70 a_{3}^{2} a_{2}^{2}\right. \right. \nonumber \\&\left. \left. -80 a_{1} a_{3} a_{4} a_{2}+40 a_{3}^{2} \left( 2 a_{1} a_{3}+5 a_{4}\right) \right) \right. \nonumber \\&\left. +100 \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}} \left( 2 a_{1}^{2}-5 a_{2}\right) ^{2} a_5\right. \nonumber \\&\left. -20 a_{1} \left( 2 a_{1}^{2}-5 a_{2}\right) ^{3} \left( a_{2} a_{3}-6 a_5\right) +5 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{2} \left( 9 a_{2}^{4}-6 \left( 8 a_{1} a_{3}+33 a_{4}\right) a_{2}^{2}\right. \right. \nonumber \\&\left. \left. -2 \left( 137 a_{3}^{2}+30 a_{1} a_5\right) a_{2} +4 \left( 80 a_{4}^{2}+137 a_{1} a_{3} a_{4}+75 a_{3} a_5\right) \right) \right. \Big ], \end{aligned}$$
(A8)
$$\begin{aligned} \mathfrak {v}= &\, {}{\frac{a_{4} \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{4}}{\left( 4 a_{1}^{2}-10 a_{2}\right)^{4}}}\nonumber \\&+{\frac{5 a_5 \left( 4 a_{1}^{3}-13 a_{2}a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{3}}{\left( 4 a_{1}^{2}-10 a_{2}\right) ^{3}}}\nonumber \\&-{\frac{a_{1} a_{4}\left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3}a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2}a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{3}}{\left( 4 a_{1}^{2}-10 a_{2}\right)^{3}}}\nonumber \\&+{\frac{a_{2} a_{4} \left( 4 a_{1}^{3}-13 a_{2}a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{2}}{\left( 4 a_{1}^{2}-10 a_{2}\right) ^{2}}}\nonumber \\&-{\frac{a_{1} a_5 \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3}a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2}a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{2}}{\left( 2 a_{1}^{2}-5 a_{2}\right) ^{2}}}\nonumber \\&+{\frac{3 a_{2} a_5 \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5}\sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right)a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2}a_{4}}+15 a_{3}\right) }{4 a_{1}^{2}-10 a_{2}}}\\&-{\frac{a_{3}a_{4} \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3}a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2}a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) }{4 a_{1}^{2}-10 a_{2}}}\nonumber \\&+{\frac{2 \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) a_{3}^{2}}{20 a_{1}^{2}-50 a_{2}}}\nonumber \\&-{\frac{4 a_{2} a_{4} \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5}\sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right)a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2}a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) }{20 a_{1}^{2}-50 a_{2}}}\nonumber \\&-{\frac{a_{2} a_{3}}{10 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{2}}}\left[ \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5}\sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right)a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2}a_{4}}+15 a_{3}\right) \right. \nonumber \\&\left. \times \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) \right] \nonumber \\&+{\frac{3 a_{1} a_{4}}{10 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{2}}}\left[ \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) \right. \nonumber \\&\left. \times \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) \right] \nonumber \\&+{\frac{a_{1} a_{3}}{20 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{3}}}\left[ \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3}a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2}a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{2}\right. \nonumber \\&\left. \times \left( 5 a_{2}a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right)\right] \nonumber \\&-{\frac{a_{4}}{5 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{3}}}\left[ \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5}\sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right)a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2}a_{4}}+15 a_{3}\right) ^{2}\right. \nonumber \\&\left. \times \left(5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) \right] \nonumber \\&-{\frac{a_{3}}{40 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{4}}}\left[ \left( 4 a_{1}^{3}-13 a_{2}a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{3}\right. \nonumber \\&\left. \times \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) \right] \nonumber \\&+{\frac{3 a_{2}^{2} \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5}\sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right)a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2}a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) ^{2}}{\left( 20 a_{1}^{2}-50 a_{2}\right) ^{2}}}\nonumber \\&-{\frac{6 a_{1} a_{3}\left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3}a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2}a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) ^{2}}{\left( 20 a_{1}^{2}-50 a_{2}\right) ^{2}}}\nonumber \\&+{\frac{6 a_{4} \left( 5 a_{2}a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right)^{2}}{\left( 20 a_{1}^{2}-50 a_{2}\right) ^{2}}}\nonumber \\&-{\frac{3 a_{1} a_{2}}{200 \left( 2 a_{1}^{2}-5 a_{2}\right)^{3}}}\left[ \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) \right. \nonumber \\& \left. \times \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) ^{2}\right] \nonumber \\& +{\frac{9 a_{3}}{200 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{3}}} \left[ \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) \right.\nonumber \\& \left. \times \left( 5 a_{2} a_{1}^{2}+\left(\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right)a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2}a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) ^{2}\right]\nonumber \\& +{\frac{3 a_{2}}{400 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{4}}}\left[ \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5}\sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right)a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2}a_{4}}+15 a_{3}\right) ^{2}\right. \nonumber \\& \left. \times \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3}a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2}a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) ^{2}\right] \nonumber \\& + \frac{{4a_{1}^{2} \left( {5a_{2} a_{1}^{2} + \left({\sqrt 5 \sqrt {8a_{3} a_{1}^{3} + \left( {16a_{4} - 3a_{2}^{2} }\right)a_{1}^{2} - 38a_{2} a_{3} a_{1} + 12a_{2}^{3} +45a_{3}^{2} - 40a_{2} a_{4} } + 15a_{3} } \right)a_{1} -20a_{2}^{2} } \right)^{3} }}{{\left( {20a_{1}^{2} - 50a_{2} ^{3} }\right)}} \\& - {\frac{{8a_{2} \left( {5a_{2} a_{1}^{2} +\left( {\sqrt 5 \sqrt {8a_{3} a_{1}^{3} + \left( {16a_{4} -3a_{2}^{2} } \right)a_{1}^{2} - 38a_{2} a_{3} a_{1} + 12a_{2}^{3}+ 45a_{3}^{2} - 40a_{2} a_{4} } + 15a_{3} } \right)a_{1} -20a_{2}^{2} } \right)^{3} }}{{\left( {20a_{1}^{2} - 50a_{2} }\right)^{3} }}} \nonumber \\& -{\frac{a_{1}}{500 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{4}}}\left[ \left( 4 a_{1}^{3}-13 a_{2}a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) \right.\end{aligned}$$
$$\begin{aligned}& \left. \qquad\times \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) ^{3}\right] \nonumber \\&\qquad +{\frac{5 \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) ^{4}}{\left( 20 a_{1}^{2}-50 a_{2}\right)^{4}}}\nonumber \\&\qquad +{\frac{3 a_{2} \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_5}{4 a_{1}^{2}-10 a_{2}}}-2 a_{3} a_5\nonumber \\&\qquad -{\frac{a_{1} \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{2}a_5}{\left( 2 a_{1}^{2}-5 a_{2}\right) ^{2}}}\nonumber \\&\qquad +{\frac{5 \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3}a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2}a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{3} a_5}{\left( 4 a_{1}^{2}-10 a_{2}\right)^{3}}}\nonumber \\&\qquad +{\frac{4 a_{1} \left( 5 a_{2}a_{1}^{2}+\left( \sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right)a_5}{20 a_{1}^{2}-50 a_{2}}}\nonumber \\&\qquad -{\frac{a_5}{2 \left( 2 a_{1}^{2}-5 a_{2}\right) ^{2}}}\left[ \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) \right. \nonumber \\&\qquad \left. \times \left( 5 a_{2} a_{1}^{2}+\left( \sqrt{5}\sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right)a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2}a_{4}}+15 a_{3}\right) a_{1}-20 a_{2}^{2}\right) \right] ,\end{aligned}$$
(A9)
$$\begin{aligned} \mathfrak {w}= &\, {}{\frac{a_{4} \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) a_5}{4 a_{1}^{2}-10 a_{2}}}-a_5^{2}\nonumber \\&-{\frac{a_{3} \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{2} a_5}{\left( 4 a_{1}^{2}-10 a_{2}\right)^{2}}}\nonumber \\&+{\frac{a_{2} \left( 4 a_{1}^{3}-13 a_{2}a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{3} a_5}{\left( 4 a_{1}^{2}-10 a_{2}\right) ^{3}}}\nonumber \\&-{\frac{a_{1} \left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3} a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2} a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{4}a_5}{\left( 4 a_{1}^{2}-10 a_{2}\right) ^{4}}}\nonumber \\&+{\frac{\left( 4 a_{1}^{3}-13 a_{2} a_{1}+\sqrt{5} \sqrt{8 a_{3}a_{1}^{3}+\left( 16 a_{4}-3 a_{2}^{2}\right) a_{1}^{2}-38 a_{2}a_{3} a_{1}+12 a_{2}^{3}+45 a_{3}^{2}-40 a_{2} a_{4}}+15 a_{3}\right) ^{5} a_5}{\left( 4 a_{1}^{2}-10 a_{2}\right) ^{5}}}.\end{aligned}$$
(A10)

Now, to transform the principal quintic (A7) to its Bring–Jerrard form, we use the quartic Tschirnhausen transformation

$$\begin{aligned} z = y^{4}+\mathfrak {p}y^{3}+\mathfrak {q}y^{2}+\mathfrak {r}y+ \mathfrak {s}.\end{aligned}$$
(A11)

Eliminating y between Eqs. (A7) and (A11), we get to the quintic

$$\begin{aligned}z^{5}+d_{1}z^{4}+d_{2}z^{3}+d_{3}z^{2}+d_{4}z+d_5=0,\end{aligned}$$
(A12)

in which

$$\begin{aligned}&d_{1} = 3 \mathfrak {p}\mathfrak {u}-5 \mathfrak {s}+4 \mathfrak {v},\end{aligned}$$
(A13a)
$$\begin{aligned} d_{2} =& 10 \mathfrak {s}^{2} - 12 \mathfrak {p}\mathfrak {s}\mathfrak {u}+ 3 \mathfrak {p}^{2} \mathfrak {u}^{2} - 3 \mathfrak {q}\mathfrak {u}^{2} + 2 \mathfrak {q}^{2} \mathfrak {v}- 16 \mathfrak {s}\mathfrak {v}+ 5 \mathfrak {p}\mathfrak {u}\mathfrak {v}+ 6 \mathfrak {v}^{2} + 5 \mathfrak {p}\mathfrak {q}\mathfrak {w}- 4 \mathfrak {u}\mathfrak {w}+ \mathfrak {r}(3 \mathfrak {q}\mathfrak {u}+ 4 \mathfrak {p}\mathfrak {v}+ 5 \mathfrak {w}),\end{aligned}$$
(A13b)
$$\begin{aligned}d_{3} =&\, 7 \mathfrak {p}^{2} \mathfrak {q}\mathfrak {u}\mathfrak {w}-4 \mathfrak {p}^{2}\mathfrak {q}\mathfrak {v}^{2}+5 \mathfrak {p}^{2} \mathfrak {r}\mathfrak {u}\mathfrak {v}-9 \mathfrak {p}^{2} \mathfrak {s}\mathfrak {u}^{2}+\mathfrak {p}^{2} \mathfrak {u}^{2} \mathfrak {v}+\mathfrak {p}^{3} \mathfrak {u}^{3}-3 \mathfrak {p}^{3}\mathfrak {v}\mathfrak {w}-5 \mathfrak {p}^{2} \mathfrak {w}^{2}-\mathfrak {p}\mathfrak {q}^{2} \mathfrak {u}\mathfrak {v}+3 \mathfrak {p}\mathfrak {q}\mathfrak {r}\mathfrak {u}^{2}-15 \mathfrak {p}\mathfrak {q}\mathfrak {s}\mathfrak {w}\nonumber \\&\qquad -3 \mathfrak {p}\mathfrak {q}\mathfrak {u}^{3}+2 \mathfrak {p}\mathfrak {q}\mathfrak {v}\mathfrak {w}+5 \mathfrak {p}\mathfrak {r}^{2} \mathfrak {w}-12 \mathfrak {p}\mathfrak {r}\mathfrak {s}\mathfrak {v}-\mathfrak {p}\mathfrak {r}\mathfrak {u}\mathfrak {w}+8 \mathfrak {p}\mathfrak {r}\mathfrak {v}^{2}+18 \mathfrak {p}\mathfrak {s}^{2} \mathfrak {u}-15 \mathfrak {p}\mathfrak {s}\mathfrak {u}\mathfrak {v}-\mathfrak {p}\mathfrak {u}^{2} \mathfrak {w}+\mathfrak {p}\mathfrak {u}\mathfrak {v}^{2}+5 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {w}\nonumber \\&\qquad -6 \mathfrak {q}^{2} \mathfrak {s}\mathfrak {v}-\mathfrak {q}^{3} \mathfrak {u}^{2}-8 \mathfrak {q}^{2} \mathfrak {u}\mathfrak {w}+4 \mathfrak {q}^{2} \mathfrak {v}^{2}+4 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {v}-9 \mathfrak {q}\mathfrak {r}\mathfrak {s}\mathfrak {u}-2 \mathfrak {q}\mathfrak {r}\mathfrak {u}\mathfrak {v}+9 \mathfrak {q}\mathfrak {s}\mathfrak {u}^{2}-2 \mathfrak {q}\mathfrak {u}^{2} \mathfrak {v}-5 \mathfrak {q}\mathfrak {w}^{2}-3 \mathfrak {r}^{2} \mathfrak {u}^{2}+\mathfrak {r}^{3} \mathfrak {u}\nonumber \\&\qquad -15 \mathfrak {r}\mathfrak {s}\mathfrak {w}+3 \mathfrak {r}\mathfrak {u}^{3}+11 \mathfrak {r}\mathfrak {v}\mathfrak {w}+24 \mathfrak {s}^{2} \mathfrak {v}-10 \mathfrak {s}^{3}+12 \mathfrak {s}\mathfrak {u}\mathfrak {w}-18 \mathfrak {s}\mathfrak {v}^{2}-\mathfrak {u}^{4}-8 \mathfrak {u}\mathfrak {v}\mathfrak {w}+4 \mathfrak {v}^{3},\end{aligned}$$
(A13c)
$$\begin{aligned}d_{4} = &\,5 \mathfrak {s}^{4} - 2 \mathfrak {r}^{3} \mathfrak {s}\mathfrak {u}+ 9 \mathfrak {q}\mathfrak {r}\mathfrak {s}^{2} \mathfrak {u}- 12 \mathfrak {p}\mathfrak {s}^{3} \mathfrak {u}+ 2 \mathfrak {q}^{3} \mathfrak {s}\mathfrak {u}^{2} - 6 \mathfrak {p}\mathfrak {q}\mathfrak {r}\mathfrak {s}\mathfrak {u}^{2} + 6 \mathfrak {r}^{2} \mathfrak {s}\mathfrak {u}^{2} + 9 \mathfrak {p}^{2} \mathfrak {s}^{2} \mathfrak {u}^{2} - 9 \mathfrak {q}\mathfrak {s}^{2} \mathfrak {u}^{2} - 2 \mathfrak {p}^{3} \mathfrak {s}\mathfrak {u}^{3} + 6 \mathfrak {p}\mathfrak {q}\mathfrak {s}\mathfrak {u}^{3} \nonumber \\&\qquad - 6 \mathfrak {r}\mathfrak {s}\mathfrak {u}^{3} + 2 \mathfrak {s}\mathfrak {u}^{4} + \mathfrak {r}^{4} \mathfrak {v}- 8 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {s}\mathfrak {v}+ 6 \mathfrak {q}^{2} \mathfrak {s}^{2} \mathfrak {v}+ 12 \mathfrak {p}\mathfrak {r}\mathfrak {s}^{2} \mathfrak {v}- 16 \mathfrak {s}^{3} \mathfrak {v}- \mathfrak {q}^{3} \mathfrak {r}\mathfrak {u}\mathfrak {v}+ 3 \mathfrak {p}\mathfrak {q}\mathfrak {r}^{2} \mathfrak {u}\mathfrak {v}- 3 \mathfrak {r}^{3} \mathfrak {u}\mathfrak {v}+ 2 \mathfrak {p}\mathfrak {q}^{2} \mathfrak {s}\mathfrak {u}\mathfrak {v}\nonumber \\&\qquad - 10 \mathfrak {p}^{2} \mathfrak {r}\mathfrak {s}\mathfrak {u}\mathfrak {v}+ 4 \mathfrak {q}\mathfrak {r}\mathfrak {s}\mathfrak {u}\mathfrak {v}+ 15 \mathfrak {p}\mathfrak {s}^{2} \mathfrak {u}\mathfrak {v}+ \mathfrak {p}^{3} \mathfrak {r}\mathfrak {u}^{2} \mathfrak {v}- 3 \mathfrak {p}\mathfrak {q}\mathfrak {r}\mathfrak {u}^{2} \mathfrak {v}+ 3 \mathfrak {r}^{2} \mathfrak {u}^{2} \mathfrak {v}- 2 \mathfrak {p}^{2} \mathfrak {s}\mathfrak {u}^{2} \mathfrak {v}+ 4 \mathfrak {q}\mathfrak {s}\mathfrak {u}^{2} \mathfrak {v}- \mathfrak {r}\mathfrak {u}^{3} \mathfrak {v}+ \mathfrak {q}^{4} \mathfrak {v}^{2} \nonumber \\&\qquad - 4 \mathfrak {p}\mathfrak {q}^{2} \mathfrak {r}\mathfrak {v}^{2} + 2 \mathfrak {p}^{2} \mathfrak {r}^{2} \mathfrak {v}^{2} + 4 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {v}^{2} + 8 \mathfrak {p}^{2} \mathfrak {q}\mathfrak {s}\mathfrak {v}^{2} - 8 \mathfrak {q}^{2} \mathfrak {s}\mathfrak {v}^{2} - 16 \mathfrak {p}\mathfrak {r}\mathfrak {s}\mathfrak {v}^{2} + 18 \mathfrak {s}^{2} \mathfrak {v}^{2} - \mathfrak {p}^{3} \mathfrak {q}\mathfrak {u}\mathfrak {v}^{2} + 3 \mathfrak {p}\mathfrak {q}^{2} \mathfrak {u}\mathfrak {v}^{2} + \mathfrak {p}^{2} \mathfrak {r}\mathfrak {u}\mathfrak {v}^{2} \nonumber \\&\qquad - 5 \mathfrak {q}\mathfrak {r}\mathfrak {u}\mathfrak {v}^{2} - 2 \mathfrak {p}\mathfrak {s}\mathfrak {u}\mathfrak {v}^{2} + \mathfrak {q}\mathfrak {u}^{2} \mathfrak {v}^{2} + \mathfrak {p}^{4} \mathfrak {v}^{3} - 4 \mathfrak {p}^{2} \mathfrak {q}\mathfrak {v}^{3} + 2 \mathfrak {q}^{2} \mathfrak {v}^{3} + 4 \mathfrak {p}\mathfrak {r}\mathfrak {v}^{3} - 8 \mathfrak {s}\mathfrak {v}^{3} - \mathfrak {p}\mathfrak {u}\mathfrak {v}^{3} + \mathfrak {v}^{4} + 5 \mathfrak {q}\mathfrak {r}^{3} \mathfrak {w}- 10 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {s}\mathfrak {w}\nonumber \\&\qquad - 10 \mathfrak {p}\mathfrak {r}^{2} \mathfrak {s}\mathfrak {w}+ 15 \mathfrak {p}\mathfrak {q}\mathfrak {s}^{2} \mathfrak {w}+ 15 \mathfrak {r}\mathfrak {s}^{2} \mathfrak {w}- 2 \mathfrak {q}^{4} \mathfrak {u}\mathfrak {w}+ 6 \mathfrak {p}\mathfrak {q}^{2} \mathfrak {r}\mathfrak {u}\mathfrak {w}+ 3 \mathfrak {p}^{2} \mathfrak {r}^{2} \mathfrak {u}\mathfrak {w}- 9 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {u}\mathfrak {w}- 14 \mathfrak {p}^{2} \mathfrak {q}\mathfrak {s}\mathfrak {u}\mathfrak {w}+ 16 \mathfrak {q}^{2} \mathfrak {s}\mathfrak {u}\mathfrak {w}\nonumber \\&\qquad +2 \mathfrak {p}\mathfrak {r}\mathfrak {s}\mathfrak {u}\mathfrak {w}- 12 \mathfrak {s}^{2} \mathfrak {u}\mathfrak {w}+ 2 \mathfrak {p}^{3} \mathfrak {q}\mathfrak {u}^{2} \mathfrak {w}- 6 \mathfrak {p}\mathfrak {q}^{2} \mathfrak {u}^{2} \mathfrak {w}+ 6 \mathfrak {q}\mathfrak {r}\mathfrak {u}^{2} \mathfrak {w}+ 2 \mathfrak {p}\mathfrak {s}\mathfrak {u}^{2} \mathfrak {w}- 2 \mathfrak {q}\mathfrak {u}^{3} \mathfrak {w}+ \mathfrak {p}\mathfrak {q}^{3} \mathfrak {v}\mathfrak {w}- 7 \mathfrak {p}^{2} \mathfrak {q}\mathfrak {r}\mathfrak {v}\mathfrak {w}+ 3 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {v}\mathfrak {w}\nonumber \\&\qquad + 13 \mathfrak {p}\mathfrak {r}^{2} \mathfrak {v}\mathfrak {w}+ 6 \mathfrak {p}^{3} \mathfrak {s}\mathfrak {v}\mathfrak {w}- 4 \mathfrak {p}\mathfrak {q}\mathfrak {s}\mathfrak {v}\mathfrak {w}- 22 \mathfrak {r}\mathfrak {s}\mathfrak {v}\mathfrak {w}- 3 \mathfrak {p}^{4} \mathfrak {u}\mathfrak {v}\mathfrak {w}+ 11 \mathfrak {p}^{2} \mathfrak {q}\mathfrak {u}\mathfrak {v}\mathfrak {w}- 4 \mathfrak {q}^{2} \mathfrak {u}\mathfrak {v}\mathfrak {w}- 10 \mathfrak {p}\mathfrak {r}\mathfrak {u}\mathfrak {v}\mathfrak {w}+ 16 \mathfrak {s}\mathfrak {u}\mathfrak {v}\mathfrak {w}\nonumber \\&\qquad + 3 \mathfrak {p}\mathfrak {u}^{2} \mathfrak {v}\mathfrak {w}+ \mathfrak {p}^{3} \mathfrak {v}^{2} \mathfrak {w}- 3 \mathfrak {p}\mathfrak {q}\mathfrak {v}^{2} \mathfrak {w}+ 7 \mathfrak {r}\mathfrak {v}^{2} \mathfrak {w}- 4 \mathfrak {u}\mathfrak {v}^{2} \mathfrak {w}+ 5 \mathfrak {p}^{2} \mathfrak {q}^{2} \mathfrak {w}^{2} - 5 \mathfrak {q}^{3} \mathfrak {w}^{2} - 5 \mathfrak {p}^{3} \mathfrak {r}\mathfrak {w}^{2} - 5 \mathfrak {p}\mathfrak {q}\mathfrak {r}\mathfrak {w}^{2} + 5 \mathfrak {r}^{2} \mathfrak {w}^{2} \nonumber \\&\qquad + 10 \mathfrak {p}^{2} \mathfrak {s}\mathfrak {w}^{2} + 10 \mathfrak {q}\mathfrak {s}\mathfrak {w}^{2} - 2 \mathfrak {p}^{3} \mathfrak {u}\mathfrak {w}^{2} + 4 \mathfrak {p}\mathfrak {q}\mathfrak {u}\mathfrak {w}^{2} - 7 \mathfrak {r}\mathfrak {u}\mathfrak {w}^{2} + 2 \mathfrak {u}^{2} \mathfrak {w}^{2} + \mathfrak {p}^{2} \mathfrak {v}\mathfrak {w}^{2} - 6 \mathfrak {q}\mathfrak {v}\mathfrak {w}^{2} + 5 \mathfrak {p}\mathfrak {w}^{3},\end{aligned}$$
(A13d)
$$\begin{aligned}d_5 =&\, \mathfrak {w}^{3} \mathfrak {p}^{5}-\mathfrak {s}\mathfrak {v}^{3} \mathfrak {p}^{4}-2 \mathfrak {r}\mathfrak {u}\mathfrak {w}^{2} \mathfrak {p}^{4}-\mathfrak {q}\mathfrak {v}\mathfrak {w}^{2} \mathfrak {p}^{4}+\mathfrak {r}\mathfrak {v}^{2} \mathfrak {w}\mathfrak {p}^{4}+3 \mathfrak {s}\mathfrak {u}\mathfrak {v}\mathfrak {w}\mathfrak {p}^{4}+\mathfrak {s}^{2} \mathfrak {u}^{3} \mathfrak {p}^{3}-5 \mathfrak {q}\mathfrak {w}^{3} \mathfrak {p}^{3}+\mathfrak {q}\mathfrak {s}\mathfrak {u}\mathfrak {v}^{2} \mathfrak {p}^{3}+5 \mathfrak {r}\mathfrak {s}\mathfrak {w}^{2} \mathfrak {p}^{3}\nonumber \\&\qquad +\mathfrak {q}^{2} \mathfrak {u}\mathfrak {w}^{2} \mathfrak {p}^{3}+2 \mathfrak {s}\mathfrak {u}\mathfrak {w}^{2} \mathfrak {p}^{3}+\mathfrak {r}\mathfrak {v}\mathfrak {w}^{2} \mathfrak {p}^{3}-\mathfrak {r}\mathfrak {s}\mathfrak {u}^{2} \mathfrak {v}\mathfrak {p}^{3}+\mathfrak {r}^{2} \mathfrak {u}^{2} \mathfrak {w}\mathfrak {p}^{3}-2 \mathfrak {q}\mathfrak {s}\mathfrak {u}^{2} \mathfrak {w}\mathfrak {p}^{3}-\mathfrak {s}\mathfrak {v}^{2} \mathfrak {w}\mathfrak {p}^{3}-3 \mathfrak {s}^{2} \mathfrak {v}\mathfrak {w}\mathfrak {p}^{3}-\mathfrak {q}\mathfrak {r}\mathfrak {u}\mathfrak {v}\mathfrak {w}\mathfrak {p}^{3}\nonumber \\&\qquad +4 \mathfrak {q}\mathfrak {s}\mathfrak {v}^{3} \mathfrak {p}^{2}+5 \mathfrak {r}\mathfrak {w}^{3} \mathfrak {p}^{2}-\mathfrak {u}\mathfrak {w}^{3} \mathfrak {p}^{2}-3 \mathfrak {s}^{3} \mathfrak {u}^{2} \mathfrak {p}^{2}-4 \mathfrak {q}\mathfrak {s}^{2} \mathfrak {v}^{2} \mathfrak {p}^{2}-2 \mathfrak {r}^{2} \mathfrak {s}\mathfrak {v}^{2} \mathfrak {p}^{2}-\mathfrak {r}\mathfrak {s}\mathfrak {u}\mathfrak {v}^{2} \mathfrak {p}^{2}-5 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {w}^{2} \mathfrak {p}^{2}-5 \mathfrak {s}^{2} \mathfrak {w}^{2} \mathfrak {p}^{2}\nonumber \\&\qquad -5 \mathfrak {q}^{2} \mathfrak {s}\mathfrak {w}^{2} \mathfrak {p}^{2}+6 \mathfrak {q}\mathfrak {r}\mathfrak {u}\mathfrak {w}^{2} \mathfrak {p}^{2}+4 \mathfrak {q}^{2} \mathfrak {v}\mathfrak {w}^{2} \mathfrak {p}^{2}-\mathfrak {s}\mathfrak {v}\mathfrak {w}^{2} \mathfrak {p}^{2}+\mathfrak {s}^{2} \mathfrak {u}^{2} \mathfrak {v}\mathfrak {p}^{2}+5 \mathfrak {r}\mathfrak {s}^{2} \mathfrak {u}\mathfrak {v}\mathfrak {p}^{2}-4 \mathfrak {q}\mathfrak {r}\mathfrak {v}^{2} \mathfrak {w}\mathfrak {p}^{2}+7 \mathfrak {q}\mathfrak {s}^{2} \mathfrak {u}\mathfrak {w}\mathfrak {p}^{2}-3 \mathfrak {r}^{2} \mathfrak {s}\mathfrak {u}\mathfrak {w}\mathfrak {p}^{2}\nonumber \\&\qquad +2 \mathfrak {r}^{3} \mathfrak {v}\mathfrak {w}\mathfrak {p}^{2}+7 \mathfrak {q}\mathfrak {r}\mathfrak {s}\mathfrak {v}\mathfrak {w}\mathfrak {p}^{2}+\mathfrak {r}^{2} \mathfrak {u}\mathfrak {v}\mathfrak {w}\mathfrak {p}^{2}-11 \mathfrak {q}\mathfrak {s}\mathfrak {u}\mathfrak {v}\mathfrak {w}\mathfrak {p}^{2}-3 \mathfrak {q}\mathfrak {s}^{2} \mathfrak {u}^{3} \mathfrak {p}-4 \mathfrak {r}\mathfrak {s}\mathfrak {v}^{3} \mathfrak {p}+\mathfrak {s}\mathfrak {u}\mathfrak {v}^{3} \mathfrak {p}+5 \mathfrak {q}^{2} \mathfrak {w}^{3} \mathfrak {p}-5 \mathfrak {s}\mathfrak {w}^{3} \mathfrak {p}+\mathfrak {v}\mathfrak {w}^{3} \mathfrak {p}\nonumber \\&\qquad +3 \mathfrak {q}\mathfrak {r}\mathfrak {s}^{2} \mathfrak {u}^{2} \mathfrak {p}+8 \mathfrak {r}\mathfrak {s}^{2} \mathfrak {v}^{2} \mathfrak {p}+4 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {s}\mathfrak {v}^{2} \mathfrak {p}+\mathfrak {s}^{2} \mathfrak {u}\mathfrak {v}^{2} \mathfrak {p}-3 \mathfrak {q}^{2} \mathfrak {s}\mathfrak {u}\mathfrak {v}^{2} \mathfrak {p}+5 \mathfrak {r}^{3} \mathfrak {w}^{2} \mathfrak {p}+2 \mathfrak {r}\mathfrak {u}^{2} \mathfrak {w}^{2} \mathfrak {p}+5 \mathfrak {q}^{3} \mathfrak {r}\mathfrak {w}^{2} \mathfrak {p}+5 \mathfrak {q}\mathfrak {r}\mathfrak {s}\mathfrak {w}^{2} \mathfrak {p}\nonumber \\&\qquad -3 \mathfrak {q}^{3} \mathfrak {u}\mathfrak {w}^{2} \mathfrak {p}-7 \mathfrak {r}^{2} \mathfrak {u}\mathfrak {w}^{2} \mathfrak {p}-4 \mathfrak {q}\mathfrak {s}\mathfrak {u}\mathfrak {w}^{2} \mathfrak {p}-7 \mathfrak {q}\mathfrak {r}\mathfrak {v}\mathfrak {w}^{2} \mathfrak {p}+\mathfrak {q}\mathfrak {u}\mathfrak {v}\mathfrak {w}^{2} \mathfrak {p}+3 \mathfrak {s}^{4} \mathfrak {u}\mathfrak {p}-4 \mathfrak {r}\mathfrak {s}^{3} \mathfrak {v}\mathfrak {p}+3 \mathfrak {q}\mathfrak {r}\mathfrak {s}\mathfrak {u}^{2} \mathfrak {v}\mathfrak {p}-5 \mathfrak {s}^{3} \mathfrak {u}\mathfrak {v}\mathfrak {p}-\mathfrak {q}^{2} \mathfrak {s}^{2} \mathfrak {u}\mathfrak {v}\mathfrak {p}\nonumber \\&\qquad -3 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {s}\mathfrak {u}\mathfrak {v}\mathfrak {p}-5 \mathfrak {q}\mathfrak {s}^{3} \mathfrak {w}\mathfrak {p}+5 \mathfrak {r}^{2} \mathfrak {s}^{2} \mathfrak {w}\mathfrak {p}-3 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {u}^{2} \mathfrak {w}\mathfrak {p}-\mathfrak {s}^{2} \mathfrak {u}^{2} \mathfrak {w}\mathfrak {p}+6 \mathfrak {q}^{2} \mathfrak {s}\mathfrak {u}^{2} \mathfrak {w}\mathfrak {p}+4 \mathfrak {r}^{2} \mathfrak {v}^{2} \mathfrak {w}\mathfrak {p}+3 \mathfrak {q}\mathfrak {s}\mathfrak {v}^{2} \mathfrak {w}\mathfrak {p}-\mathfrak {r}\mathfrak {u}\mathfrak {v}^{2} \mathfrak {w}\mathfrak {p}\nonumber \\&\qquad +3 \mathfrak {q}\mathfrak {r}^{3} \mathfrak {u}\mathfrak {w}\mathfrak {p}-\mathfrak {r}\mathfrak {s}^{2} \mathfrak {u}\mathfrak {w}\mathfrak {p}-6 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {s}\mathfrak {u}\mathfrak {w}\mathfrak {p}-4 \mathfrak {q}^{2} \mathfrak {r}^{2} \mathfrak {v}\mathfrak {w}\mathfrak {p}+2 \mathfrak {q}\mathfrak {s}^{2} \mathfrak {v}\mathfrak {w}\mathfrak {p}-3 \mathfrak {s}\mathfrak {u}^{2} \mathfrak {v}\mathfrak {w}\mathfrak {p}-\mathfrak {q}^{3} \mathfrak {s}\mathfrak {v}\mathfrak {w}\mathfrak {p}-13 \mathfrak {r}^{2} \mathfrak {s}\mathfrak {v}\mathfrak {w}\mathfrak {p}+3 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {u}\mathfrak {v}\mathfrak {w}\mathfrak {p}\nonumber \\&\qquad +10 \mathfrak {r}\mathfrak {s}\mathfrak {u}\mathfrak {v}\mathfrak {w}\mathfrak {p}-\mathfrak {s}^{5}-\mathfrak {s}^{2} \mathfrak {u}^{4}-\mathfrak {s}\mathfrak {v}^{4}-\mathfrak {w}^{4}+3 \mathfrak {r}\mathfrak {s}^{2} \mathfrak {u}^{3}+4 \mathfrak {s}^{2} \mathfrak {v}^{3}-2 \mathfrak {q}^{2} \mathfrak {s}\mathfrak {v}^{3}-5 \mathfrak {q}\mathfrak {r}\mathfrak {w}^{3}+2 \mathfrak {q}\mathfrak {u}\mathfrak {w}^{3}+3 \mathfrak {q}\mathfrak {s}^{3} \mathfrak {u}^{2}-\mathfrak {q}^{3} \mathfrak {s}^{2} \mathfrak {u}^{2}\nonumber \\&\qquad -3 \mathfrak {r}^{2} \mathfrak {s}^{2} \mathfrak {u}^{2}-6 \mathfrak {s}^{3} \mathfrak {v}^{2}+4 \mathfrak {q}^{2} \mathfrak {s}^{2} \mathfrak {v}^{2}-\mathfrak {q}\mathfrak {s}\mathfrak {u}^{2} \mathfrak {v}^{2}-\mathfrak {q}^{4} \mathfrak {s}\mathfrak {v}^{2}-4 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {s}\mathfrak {v}^{2}+5 \mathfrak {q}\mathfrak {r}\mathfrak {s}\mathfrak {u}\mathfrak {v}^{2}-\mathfrak {q}^{5} \mathfrak {w}^{2}-5 \mathfrak {q}^{2} \mathfrak {r}^{2} \mathfrak {w}^{2}-5 \mathfrak {q}\mathfrak {s}^{2} \mathfrak {w}^{2}-\mathfrak {q}^{2} \mathfrak {u}^{2} \mathfrak {w}^{2}\nonumber \\&\qquad -2 \mathfrak {s}\mathfrak {u}^{2} \mathfrak {w}^{2}-\mathfrak {q}\mathfrak {v}^{2} \mathfrak {w}^{2}+5 \mathfrak {q}^{3} \mathfrak {s}\mathfrak {w}^{2}-5 \mathfrak {r}^{2} \mathfrak {s}\mathfrak {w}^{2}+3 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {u}\mathfrak {w}^{2}+7 \mathfrak {r}\mathfrak {s}\mathfrak {u}\mathfrak {w}^{2}-2 \mathfrak {q}^{3} \mathfrak {v}\mathfrak {w}^{2}+3 \mathfrak {r}^{2} \mathfrak {v}\mathfrak {w}^{2}+6 \mathfrak {q}\mathfrak {s}\mathfrak {v}\mathfrak {w}^{2}-3 \mathfrak {r}\mathfrak {u}\mathfrak {v}\mathfrak {w}^{2}\nonumber \\&\qquad -3 \mathfrak {q}\mathfrak {r}\mathfrak {s}^{3} \mathfrak {u}+\mathfrak {r}^{3} \mathfrak {s}^{2} \mathfrak {u}+4 \mathfrak {s}^{4} \mathfrak {v}-2 \mathfrak {q}^{2} \mathfrak {s}^{3} \mathfrak {v}+\mathfrak {r}\mathfrak {s}\mathfrak {u}^{3} \mathfrak {v}+4 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {s}^{2} \mathfrak {v}-2 \mathfrak {q}\mathfrak {s}^{2} \mathfrak {u}^{2} \mathfrak {v}-3 \mathfrak {r}^{2} \mathfrak {s}\mathfrak {u}^{2} \mathfrak {v}-\mathfrak {r}^{4} \mathfrak {s}\mathfrak {v}-2 \mathfrak {q}\mathfrak {r}\mathfrak {s}^{2} \mathfrak {u}\mathfrak {v}+3 \mathfrak {r}^{3} \mathfrak {s}\mathfrak {u}\mathfrak {v}\nonumber \\&\qquad +\mathfrak {q}^{3} \mathfrak {r}\mathfrak {s}\mathfrak {u}\mathfrak {v}+\mathfrak {r}^{5} \mathfrak {w}-5 \mathfrak {r}\mathfrak {s}^{3} \mathfrak {w}-\mathfrak {r}^{2} \mathfrak {u}^{3} \mathfrak {w}+2 \mathfrak {q}\mathfrak {s}\mathfrak {u}^{3} \mathfrak {w}+\mathfrak {r}\mathfrak {v}^{3} \mathfrak {w}+5 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {s}^{2} \mathfrak {w}+3 \mathfrak {r}^{3} \mathfrak {u}^{2} \mathfrak {w}-6 \mathfrak {q}\mathfrak {r}\mathfrak {s}\mathfrak {u}^{2} \mathfrak {w}+2 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {v}^{2} \mathfrak {w}-7 \mathfrak {r}\mathfrak {s}\mathfrak {v}^{2} \mathfrak {w}\nonumber \\&\qquad +4 \mathfrak {s}\mathfrak {u}\mathfrak {v}^{2} \mathfrak {w}-5 \mathfrak {q}\mathfrak {r}^{3} \mathfrak {s}\mathfrak {w}-3 \mathfrak {r}^{4} \mathfrak {u}\mathfrak {w}+4 \mathfrak {s}^{3} \mathfrak {u}\mathfrak {w}-\mathfrak {q}^{3} \mathfrak {r}^{2} \mathfrak {u}\mathfrak {w}-8 \mathfrak {q}^{2} \mathfrak {s}^{2} \mathfrak {u}\mathfrak {w}+2 \mathfrak {q}^{4} \mathfrak {s}\mathfrak {u}\mathfrak {w}+9 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {s}\mathfrak {u}\mathfrak {w}+4 \mathfrak {q}\mathfrak {r}^{3} \mathfrak {v}\mathfrak {w}+11 \mathfrak {r}\mathfrak {s}^{2} \mathfrak {v}\mathfrak {w}\nonumber \\&\qquad +\mathfrak {q}\mathfrak {r}\mathfrak {u}^{2} \mathfrak {v}\mathfrak {w}+\mathfrak {q}^{4} \mathfrak {r}\mathfrak {v}\mathfrak {w}-3 \mathfrak {q}^{2} \mathfrak {r}\mathfrak {s}\mathfrak {v}\mathfrak {w}-5 \mathfrak {q}\mathfrak {r}^{2} \mathfrak {u}\mathfrak {v}\mathfrak {w}-8 \mathfrak {s}^{2} \mathfrak {u}\mathfrak {v}\mathfrak {w}+4 \mathfrak {q}^{2} \mathfrak {s}\mathfrak {u}\mathfrak {v}\mathfrak {w}. \end{aligned}$$
(A13e)

Similar to the previous step, it is now necessary to solve the equations \(d_{1}=d_{2}=0\) and the extra equation \(3 \mathfrak {q}\mathfrak {u}+ 4 \mathfrak {p}\mathfrak {v}+ 5 \mathfrak {w}=0\) extracted from Eq. (A13b), for the parameters \(\mathfrak {p}, \mathfrak {q}\) and \(\mathfrak {s}\). These equations result in the values

$$\begin{aligned} \mathfrak {p}= & {} {\frac{1}{54 \mathfrak {u}^{4}+600 \mathfrak {u}\mathfrak {v}\mathfrak {w}-320 \mathfrak {v}^{3}}}\left[ \mp \left( 27 \mathfrak {u}^{3} \mathfrak {v}+375 \mathfrak {u}\mathfrak {w}^{2}-400 \mathfrak {v}^{2} \mathfrak {w}\right) +\mathfrak {Q}\right] , \end{aligned}$$
(A14)
$$\begin{aligned} \mathfrak {q}= & {} {\frac{1}{27 \mathfrak {u}^{5} - 160 \mathfrak {u}\mathfrak {v}^{3} + 300 \mathfrak {u}^{2} \mathfrak {v}\mathfrak {w}}}\left[ 18 \mathfrak {u}^{3} \mathfrak {v}^{2} - 45 \mathfrak {u}^{4} \mathfrak {w}- 250 \mathfrak {u}\mathfrak {v}\mathfrak {w}\pm {\frac{2}{3}}\mathfrak {v}\mathfrak {Q}\right] , \end{aligned}$$
(A15)
$$\begin{aligned} \mathfrak {s}= & {} {\frac{1}{270 \mathfrak {u}^{4}+3000 \mathfrak {u}\mathfrak {v}\mathfrak {w}-1600 \mathfrak {v}^{3}}}\left[ 135 \mathfrak {u}^{4} \mathfrak {v}-1125 \mathfrak {u}^{2} \mathfrak {w}^{2}+3600 \mathfrak {u}\mathfrak {v}^{2} \mathfrak {w}-1280 \mathfrak {v}^{4}\mp 3\mathfrak {u}\mathfrak {Q}\right] , \end{aligned}$$
(A16)

where \(\mathfrak {Q} = 3|\mathfrak {u}|\sqrt{5 \left( -27 \mathfrak {u}^{4} \mathfrak {v}^{2}+2250 \mathfrak {u}^{2} \mathfrak {v}\mathfrak {w}^{2}+108 \mathfrak {u}^{5} \mathfrak {w}-1600 \mathfrak {u}\mathfrak {v}^{3} \mathfrak {w}+256 \mathfrak {v}^{5}+3125 \mathfrak {w}^{4}\right) }\). Note that, this process leaves \(\mathfrak {r}\) as a free parameter. This parameter can be however determined appropriately, by means of the equation \(d_{3} = 0\), which results in the cubic

$$\begin{aligned} e_{3} \mathfrak {r}^{3}+e_{2} \mathfrak {r}^{2}+e_{1} \mathfrak {r}+e_{0} = 0, \end{aligned}$$
(A17)

where

$$\begin{aligned}&e_{0} = 7 \mathfrak {p}^{2} \mathfrak {q}\mathfrak {u}\mathfrak {w}-4 \mathfrak {p}^{2} \mathfrak {q}\mathfrak {v}^{2}-9 \mathfrak {p}^{2} \mathfrak {s}\mathfrak {u}^{2}+\mathfrak {p}^{2} \mathfrak {u}^{2} \mathfrak {v}+\mathfrak {p}^{3} \mathfrak {u}^{3}-3 \mathfrak {p}^{3} \mathfrak {v}\mathfrak {w}-5 \mathfrak {p}^{2} \mathfrak {w}^{2}-\mathfrak {p}\mathfrak {q}^{2} \mathfrak {u}\mathfrak {v}-15 \mathfrak {p}\mathfrak {q}\mathfrak {s}\mathfrak {w}-3 \mathfrak {p}\mathfrak {q}\mathfrak {u}^{3}+2 \mathfrak {p}\mathfrak {q}\mathfrak {v}\mathfrak {w}\nonumber \\&\qquad +6 \mathfrak {s}^{2} (3 \mathfrak {p}\mathfrak {u}+4 \mathfrak {v})-15 \mathfrak {p}\mathfrak {s}\mathfrak {u}\mathfrak {v}-\mathfrak {p}\mathfrak {u}^{2} \mathfrak {w}+\mathfrak {p}\mathfrak {u}\mathfrak {v}^{2}-6 \mathfrak {q}^{2} \mathfrak {s}\mathfrak {v}-\mathfrak {q}^{3} \mathfrak {u}^{2}-8 \mathfrak {q}^{2} \mathfrak {u}\mathfrak {w}+4 \mathfrak {q}^{2} \mathfrak {v}^{2}+9 \mathfrak {q}\mathfrak {s}\mathfrak {u}^{2}-2 \mathfrak {q}\mathfrak {u}^{2} \mathfrak {v}-5 \mathfrak {q}\mathfrak {w}^{2}\nonumber \\&\qquad +12 \mathfrak {s}\mathfrak {u}\mathfrak {w}-18 \mathfrak {s}\mathfrak {v}^{2}-\mathfrak {u}^{4}-8 \mathfrak {u}\mathfrak {v}\mathfrak {w}+4 \mathfrak {v}^{3}-10 \mathfrak {s}^{3}, \end{aligned}$$
(A18a)
$$\begin{aligned}&e_{1} = -9 \mathfrak {q}\mathfrak {s}\mathfrak {u}+ 3 \mathfrak {p}\mathfrak {q}\mathfrak {u}^{2} + 3 \mathfrak {u}^{3} - 12 \mathfrak {p}\mathfrak {s}\mathfrak {v}+ 5 \mathfrak {p}^{2} \mathfrak {u}\mathfrak {v}- 2 \mathfrak {q}\mathfrak {u}\mathfrak {v}+ 8 \mathfrak {p}\mathfrak {v}^{2} + 5 \mathfrak {q}^{2} \mathfrak {w}- 15 \mathfrak {s}\mathfrak {w}- \mathfrak {p}\mathfrak {u}\mathfrak {w}+ 11 \mathfrak {v}\mathfrak {w}, \end{aligned}$$
(A18b)
$$\begin{aligned}&e_{2} = -3 \mathfrak {u}^{2} + 4 \mathfrak {q}\mathfrak {v}+ 5 \mathfrak {p}\mathfrak {w}, \end{aligned}$$
(A18c)
$$\begin{aligned}&e_{3} = \mathfrak {u}, \end{aligned}$$
(A18d)

whose solution, as it is well known, can be expressed in terms of radicals. Now, applying these solutions for \(\mathfrak {r}\), together with those expressed in Eqs. (A14)–(A16) for \(\mathfrak {p}\), \(\mathfrak {q}\) and \(\mathfrak {s}\), the values of \(d_{4,5}\) in Eqs. (A13d) and (A13e) are obtained. The expressions are, however, that huge that cannot be put in the paper. But we can be confident that the quintic (A12) has been reduced to the Bring–Jerrard form

$$\begin{aligned} z^{5} + d_{4} z+ d_{5} =0. \end{aligned}$$
(A19)

It is still possible to make more simplifications by defining

$$\begin{aligned} z\doteq {\frac{\mathfrak {t}}{\mathfrak {f}}}. \end{aligned}$$
(A20)

This way, the quintic (A19) can be recast as

$$\begin{aligned} \mathfrak {t}^{5}+d_{4} \mathfrak {f}^{4} \mathfrak {t}+d_{5}\mathfrak {f}^{5}=0. \end{aligned}$$
(A21)

Now letting

$$\begin{aligned} \mathfrak {f}=\left( \pm {\frac{1}{d_{4}}}\right) ^{\frac{1}{4}}, \end{aligned}$$
(A22)

we get to the more simplified Bring–Jerrard form of the quintic

$$\begin{aligned} \mathfrak {t}^{5}\pm \mathfrak {t}+K=0, \end{aligned}$$
(A23)

where we have defined \(K=d_{5} \mathfrak {f}^{5}\).

Appendix B: Derivation of the solutions to the x-parameter

Let us denote the solutions in the Eqs. (47)–(51) by \(\mathfrak {t}_{j}\) with \(j=\overline{1,5}\). Based on the definition in Eq. (A20), we have \(z_{j} = \mathfrak {f}^{-1} \mathfrak {t}_{j}\). Then from Eq. (A11), one needs to solve a quartic of the general form, in order to obtain an expression for \(y_{j}\) in terms of \(z_{j}\). This way, for each of the solutions for \(z_{j}\), we have four solutions for \(y_{j}\). To proceed with solving the quartic (A11), let us first apply the change of variable

$$\begin{aligned} y_{j}=W_{j}-{\frac{\mathfrak {p}}{4}}, \end{aligned}$$
(B1)

which depresses the equation to

$$\begin{aligned} W_{j}^{4}+\mathcal {A}W_{j}^{2}+\mathcal {B}W_{j}+\mathcal {C} = 0, \end{aligned}$$
(B2)

where

$$\begin{aligned}&\mathcal {A} = \mathfrak {q}-{\frac{3\mathfrak {p}^{2}}{8}}, \end{aligned}$$
(B3a)
$$\begin{aligned}&\mathcal {B} = \mathfrak {r}+{\frac{\mathfrak {p}^{3}}{8}}-{\frac{\mathfrak {p}\mathfrak {q}}{2}}, \end{aligned}$$
(B3b)
$$\begin{aligned}&\mathcal {C} = (\mathfrak {s}-z_{j})+{\frac{\mathfrak {p}^{2}\mathfrak {q}}{16}}-{\frac{3\mathfrak {p}^{4}}{256}}-{\frac{\mathfrak {p}\mathfrak {r}}{4}}. \end{aligned}$$
(B3c)

The method of solving the suppressed quartic (B2) has been given in the appendix C of Ref. [65]. Pursuing this method, we obtain the four solutions

$$\begin{aligned} W_{j1}= & {} \tilde{\mathcal {A}} + \sqrt{\tilde{\mathcal {A}^{2}}-\tilde{\mathcal {B}}}, \end{aligned}$$
(B4)
$$\begin{aligned} W_{j2}= & {} \tilde{\mathcal {A}} - \sqrt{\tilde{\mathcal {A}^{2}}-\tilde{\mathcal {B}}}, \end{aligned}$$
(B5)
$$\begin{aligned} W_{j3}= & {} - \tilde{\mathcal {A}} + \sqrt{\tilde{\mathcal {A}^{2}}-\tilde{\mathcal {C}}}, \end{aligned}$$
(B6)
$$\begin{aligned} W_{j4}= & {} - \tilde{\mathcal {A}} - \sqrt{\tilde{\mathcal {A}^{2}}-\tilde{\mathcal {C}}}, \end{aligned}$$
(B7)

in which

$$\begin{aligned}&\tilde{\mathcal {A}} = \sqrt{\tilde{\mathcal {U}}-{\frac{\mathcal {A}}{6}}}, \end{aligned}$$
(B8a)
$$\begin{aligned}&\tilde{\mathcal {B}} = 2\tilde{\mathcal {A}}^{2}+{\frac{\mathcal {A}}{2}}+{\frac{\mathcal {B}}{4\tilde{\mathcal {A}}}}, \end{aligned}$$
(B8b)
$$\begin{aligned}&\tilde{\mathcal {C}} = 2\tilde{\mathcal {A}}^{2}+{\frac{\mathcal {A}}{2}}-{\frac{\mathcal {B}}{4\tilde{\mathcal {A}}}}, \end{aligned}$$
(B8c)

where

$$\begin{aligned} \tilde{\mathcal {U}} = \sqrt{\frac{\tilde{\epsilon }_{2}}{3}}\cosh \left( {\frac{1}{3}}{\text {arccosh}}\left( 3\tilde{\epsilon }_{3}\sqrt{\frac{3}{\tilde{\epsilon }_{2}^{3}}}\right) \right) , \end{aligned}$$
(B9)

with

$$\begin{aligned}&\tilde{\epsilon }_{2}={\frac{\mathcal {A}^{2}}{12}}+\mathcal {C}, \end{aligned}$$
(B10a)
$$\begin{aligned}&\tilde{\epsilon }_{3} = {\frac{\mathcal {A}^{3}}{216}}-{\frac{\mathcal {A}\mathcal {C}}{6}}+{\frac{\mathcal {B}^{2}}{16}}. \end{aligned}$$
(B10b)

Finally, the solutions to the y-parameter are given as

$$\begin{aligned} \left( y_{j}\right) _{i}\equiv y_{ji} = W_{ji}-{\frac{\mathfrak {p}}{4}}, \end{aligned}$$
(B11)

where \(i=\overline{1,4}\). In this manner, the \(y_{ji}\) solutions form a \(5\times 4\) matrix (or in other words, four sets of solutions to the quintic (A7), in accordance with the solutions to the quintic (A12)). Now, in order to obtain the solutions for the x-parameter, as it is the original purpose of this discussion, we have to solve the quadratic equation (A2), for the known solutions \(y_{ji}\). This results in the two solutions

$$\begin{aligned} \left( x_{ji}\right) _{1}= & {} {\frac{-b_{1}+\sqrt{b_{1}^{2}-4\left( b_{2}-y_{ji}\right) }}{2}}, \end{aligned}$$
(B12)
$$\begin{aligned} \left( x_{ji}\right) _{2}= & {} {\frac{-b_{1}-\sqrt{b_{1}^{2}-4\left( b_{2}-y_{ji}\right) }}{2}}, \end{aligned}$$
(B13)

for \(b_{1,2}\) given in Eqs. (A5) and (A6). In this sense, for each of the \(y_{ji}\) solutions, there are two solutions for the x-parameter, which can be abbreviated as \(x_{jil}\) with \(l=1,2\). These solutions form a \(5\times 4\) matrix of \(2\times 1\) matrices, in the form

$$\begin{aligned} x_{jil}=\begin{pmatrix} z_{1}: \qquad y_{11}\rightarrow \begin{pmatrix} x_{111}\\ x_{112} \end{pmatrix} &{} y_{12}\rightarrow \begin{pmatrix} x_{121}\\ x_{122} \end{pmatrix} &{} y_{13}\rightarrow \begin{pmatrix} x_{131}\\ x_{132} \end{pmatrix} &{} y_{14}\rightarrow \begin{pmatrix} x_{141}\\ x_{142} \end{pmatrix}\\ z_{2}: \qquad y_{21}\rightarrow \begin{pmatrix} x_{211}\\ x_{212} \end{pmatrix} &{} y_{22}\rightarrow \begin{pmatrix} x_{221}\\ x_{222} \end{pmatrix} &{} y_{23}\rightarrow \begin{pmatrix} x_{231}\\ x_{232} \end{pmatrix} &{} y_{24}\rightarrow \begin{pmatrix} x_{241}\\ x_{242} \end{pmatrix}\\ z_{3}:\qquad y_{31}\rightarrow \begin{pmatrix} x_{311}\\ x_{312} \end{pmatrix} &{} y_{32}\rightarrow \begin{pmatrix} x_{321}\\ x_{322} \end{pmatrix} &{} y_{33}\rightarrow \begin{pmatrix} x_{331}\\ x_{332} \end{pmatrix} &{} y_{34}\rightarrow \begin{pmatrix} x_{341}\\ x_{342} \end{pmatrix}\\ z_{4}:\qquad y_{41}\rightarrow \begin{pmatrix} x_{411}\\ x_{412} \end{pmatrix} &{} y_{42}\rightarrow \begin{pmatrix} x_{421}\\ x_{422} \end{pmatrix} &{} y_{43}\rightarrow \begin{pmatrix} x_{431}\\ x_{432} \end{pmatrix} &{} y_{44}\rightarrow \begin{pmatrix} x_{441}\\ x_{442} \end{pmatrix}\\ z_5:\qquad y_{51}\rightarrow \begin{pmatrix} x_{511}\\ x_{512} \end{pmatrix} &{} y_{52}\rightarrow \begin{pmatrix} x_{521}\\ x_{522} \end{pmatrix} &{} y_{53}\rightarrow \begin{pmatrix} x_{531}\\ x_{532} \end{pmatrix} &{} y_{54}\rightarrow \begin{pmatrix} x_{541}\\ x_{542} \end{pmatrix} \end{pmatrix}, \end{aligned}$$
(B14)

meaning that for the solutions of the \(\mathfrak {t}\)-parameter derived from the quintic (A23), there are eight sets of solutions for the x-parameter in the context of the original quintic (A1).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, M., Olivares, M. & Villanueva, J.R. Spherical photon orbits around a rotating black hole with quintessence and cloud of strings. Eur. Phys. J. Plus 138, 7 (2023). https://doi.org/10.1140/epjp/s13360-022-03538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03538-1

Navigation