Log in

Geodesic congruences in 5D warped Ellis–Bronnikov spacetimes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the timelike geodesic congruences in the generalised Ellis–Bronnikov spacetime (4D-GEB) and in recently proposed 5D model where a 4D-GEB is embedded in a warped geometry (5D-WGEB) and conduct a comparative study. Analytical expressions of ESR variables (for 4D geometries) are found which reveal the role of the wormhole parameter. In more general 4D and 5D scenarios geodesic equation, geodesic deviation equation and Raychaudhuri equations are solved numerically. The evolution of cross-sectional area of the congruences of timelike geodesics (orthogonal to the geodesic flow lines) projected on 2D-surfaces yield an interesting perspective and shows the effects of the wormhole parameter and growing/decaying warp factors. The presence of war** factor triggers rotation or accretion even in the absence of initial congruence rotation. The presence of rotation in the congruence is also found to be playing a crucial role which we discuss in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. A. Einstein, N. Rosen, The particle problem in the general theory of relativity. Phys. Rev. 48, 73–77 (1935)

    Article  ADS  MATH  Google Scholar 

  2. M. Visser, Lorentzian wormholes: From Einstein to Hawking (AIP press, New York, 1995)

    Google Scholar 

  3. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  4. R.M. Wald, General Relativity (University of Chicago press, Chicago, 2010). https://doi.org/10.7208/chicago/9780226870373.001.0001

    Book  MATH  Google Scholar 

  5. F.S.N. Lobo (ed.), Wormholes, Warp Drives and Energy Conditions (Springer, Berlin, 2017)

    MATH  Google Scholar 

  6. E. Witten, Light rays, singularities, and all that. Rev. Mod. Phys. 92(4), 045004 (2020). ar**v:1901.03928 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  7. J.A. Wheeler, On the nature of quantum geometrodynamics. Annals Phys. 2, 604–614 (1957)

    Article  ADS  MATH  Google Scholar 

  8. M.D. Kruskal, Maximal extension of Schwarzschild metric. Phys. Rev. 119, 1743–1745 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. R.W. Fuller, J.A. Wheeler, Causality and multiply connected space-time. Phys. Rev. 128, 919–929 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D.M. Eardley, Death of white holes in the early universe. Phys. Rev. Lett. 33, 442–444 (1974)

    Article  ADS  Google Scholar 

  11. R.M. Wald, Quantum gravity and time reversibility. Phys. Rev. D 21, 2742–2755 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  12. M.S. Morris, K.S. Thorne, Wormholes in space-time and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395–412 (1988)

    Article  ADS  MATH  Google Scholar 

  13. F. S. N. Lobo, The Dark side of gravity: Modified theories of gravity, in: [ar**v:0807.1640 [gr-qc]]

  14. D. Hochberg, Lorentzian wormholes in higher order gravity theories. Phys. Lett. B 251, 349–354 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Bhawal, S. Kar, Lorentzian wormholes in Einstein-Gauss-Bonnet theory. Phys. Rev. D 46, 2464–2468 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.G. Agnese, M. La Camera, Wormholes in the brans-dicke theory of gravitation. Phys. Rev. D 51, 2011–2013 (1995)

    Article  ADS  Google Scholar 

  17. G. C. Samanta, N. Godani and K. Bamba, Traversable wormholes with exponential shape function in modified gravity and general relativity: A comparative study, Int. J. Mod. Phys. D 29 (2020) no.09, 2050068 [ar**v:1811.06834 [gr-qc]]

  18. H. Fukutaka, K. Tanaka, K. Ghoroku, Wormhole solutions in higher derivative gravity. Phys. Lett. B 222, 191–194 (1989)

    Article  ADS  Google Scholar 

  19. K. Ghoroku, T. Soma, Lorentzian wormholes in higher derivative gravity and the weak energy condition. Phys. Rev. D 46, 1507–1516 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. N. Furey and A. DeBenedictis, Wormhole throats in \(R^m\) gravity, Class. Quant. Grav. 22 (2005), 313-322 [ar**v:gr-qc/0410088 [gr-qc]]

  21. K.A. Bronnikov, E. Elizalde, Spherical systems in models of nonlocally corrected gravity. Phys. Rev. D 81, 044032 (2010). [ar**v:0910.3929 [hep-th]]

    Article  ADS  Google Scholar 

  22. F.S.N. Lobo, General class of wormhole geometries in conformal Weyl gravity. Class. Quant. Grav. 25, 175006 (2008). [ar**v:0801.4401 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. P. Kanti, B. Kleihaus, J. Kunz, Wormholes in dilatonic Einstein-Gauss-Bonnet theory. Phys. Rev. Lett. 107, 271101 (2011). [ar**v:1108.3003 [gr-qc]]

    Article  Google Scholar 

  24. P. Kanti, B. Kleihaus, J. Kunz, Stable Lorentzian wormholes in dilatonic Einstein-Gauss-Bonnet theory. Phys. Rev. D 85, 044007 (2012). [ar**v:1111.4049 [hep-th]]

    Article  ADS  Google Scholar 

  25. M. Zubair, F. Kousar and S. Bahamonde, Static spherically symmetric wormholes in generalized \(f(R,\phi )\) gravity, Eur. Phys. J. Plus 133 (2018) no.12, 523 [ar**v:1712.05699 [gr-qc]]

  26. R. Shaikh and S. Kar, Wormholes, the weak energy condition, and scalar-tensor gravity, Phys. Rev. D 94 (2016) no.2, 024011 [ar**v:1604.02857 [gr-qc]]

  27. A. Övgün, K. Jusufi and İ. Sakallı, Exact traversable wormhole solution in bumblebee gravity, Phys. Rev. D 99 (2019) no.2, 024042 [ar**v:1804.09911 [gr-qc]]

  28. P. Cañate, J. Sultana and D. Kazanas, Ellis wormhole without a phantom scalar field, Phys. Rev. D 100 (2019) no.6, 064007 [ar**v:1907.09463 [gr-qc]]

  29. S. Nojiri, S.D. Odintsov, Modified gravity with negative and positive powers of the curvature: unification of the inflation and of the cosmic acceleration. Phys. Rev. D 68, 123512 (2003). [ar**v:hep-th/0307288 [hep-th]]

    Article  ADS  Google Scholar 

  30. F.S.N. Lobo, M.A. Oliveira, Wormhole geometries in f(R) modified theories of gravity. Phys. Rev. D 80, 104012 (2009). [ar**v:0909.5539 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  31. N.M. Garcia, F.S.N. Lobo, Wormhole geometries supported by a nonminimal curvature-matter coupling. Phys. Rev. D 82, 104018 (2010). [ar**v:1007.3040 [gr-qc]]

    Article  ADS  Google Scholar 

  32. N. Montelongo Garcia and F. S. N. Lobo, Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition, Class. Quant. Grav. 28 (2011), 085018 [ar**v:1012.2443 [gr-qc]]

  33. S.N. Sajadi, N. Riazi, Expanding lorentzian wormholes in \(R^2\) gravity. Prog. Theor. Phys. 126, 753–760 (2011)

    Article  ADS  MATH  Google Scholar 

  34. P. H. R. S. Moraes and P. K. Sahoo, Nonexotic matter wormholes in a trace of the energy-momentum tensor squared gravity, Phys. Rev. D 97 (2018) 2, 024007 [ar**v:1709.00027 [gr-qc]]

  35. P. K. Sahoo, P. H. R. S. Moraes and P. Sahoo, Wormholes in \(R^2\) -gravity within the \(f(R, T)\) formalism, Eur. Phys. J. C 78 (2018) 1, 46 [ar**v:1709.07774 [gr-qc]]

  36. P. H. R. S. Moraes and P. K. Sahoo, Wormholes in exponential \(f(R,T)\) gravity, Eur. Phys. J. C 79 (2019) 8, 677 [ar**v:1903.03421 [gr-qc]]

  37. P. Sahoo, P. H. R. S. Moraes, M. M. Lapola and P. K. Sahoo, Traversable wormholes in the traceless \(f(R,T)\) gravity, Int. J. Mod. Phys. D 30 (2021) 13, 2150100 [ar**v:2012.00258 [gr-qc]]

  38. Z. Hassan, S. Mandal and P. K. Sahoo, Traversable Wormhole Geometries in Gravity, Fortsch. Phys. 69 (2021) no.6, 2100023 [ar**v:2102.00915 [gr-qc]]

  39. G. Mustafa, Z. Hassan, P.H.R.S. Moraes, P.K. Sahoo, Wormhole solutions in symmetric teleparallel gravity. Phys. Lett. B 821, 136612 (2021). [ar**v:2108.01446 [gr-qc]]

    Article  MathSciNet  MATH  Google Scholar 

  40. N. V. Krishnendu, K. G. Arun and C. K. Mishra, Testing the binary black hole nature of a compact binary coalescence, Phys. Rev. Lett. 119 (2017) 9, 091101 [ar**v:1701.06318 [gr-qc]]

  41. V. Cardoso, S. Hopper, C. F. B. Macedo, C. Palenzuela and P. Pani, Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale, Phys. Rev. D 94 (2016) no.8, 084031 [ar**v:1608.08637 [gr-qc]]

  42. S. Aneesh, S. Bose and S. Kar, Gravitational waves from quasinormal modes of a class of Lorentzian wormholes, Phys. Rev. D 97 (2018) no.12, 124004 [ar**v:1803.10204 [gr-qc]]

  43. P. Dutta Roy, S. Aneesh and S. Kar, Revisiting a family of wormholes: geometry, matter, scalar quasinormal modes and echoes, Eur. Phys. J. C 80 (2020) no.9, 850 [ar**v:1910.08746 [gr-qc]]

  44. F. Abe, Gravitational microlensing by the Ellis wormhole. Astrophys. J. 725, 787–793 (2010). [ar**v:1009.6084 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  45. Y. Toki, T. Kitamura, H. Asada, F. Abe, Astrometric image centroid displacements due to gravitational microlensing by the Ellis wormhole. Astrophys. J. 740, 121 (2011). [ar**v:1107.5374 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  46. R. Takahashi, H. Asada, Observational upper bound on the cosmic abundances of negative-mass compact objects and Ellis wormholes from the sloan digital sky survey quasar lens search. Astrophys. J. Lett. 768, L16 (2013). [ar**v:1303.1301 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  47. J.G. Cramer, R.L. Forward, M.S. Morris, M. Visser, G. Benford, G.A. Landis, Natural wormholes as gravitational lenses. Phys. Rev. D 51, 3117–3120 (1995). [ar**v:astro-ph/9409051]

    Article  ADS  Google Scholar 

  48. V. Perlick, On the exact gravitational lens equation in spherically symmetric and static space-times. Phys. Rev. D 69, 064017 (2004). [ar**v:gr-qc/0307072 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  49. N. Tsukamoto, T. Harada, K. Yajima, Can we distinguish between black holes and wormholes by their Einstein ring systems? Phys. Rev. D 86, 104062 (2012). [ar**v:1207.0047 [gr-qc]]

    Article  ADS  Google Scholar 

  50. C. Bambi, Can the supermassive objects at the centers of galaxies be traversable wormholes? the first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys. Rev. D 87, 107501 (2013). [ar**v:1304.5691 [gr-qc]]

    Article  ADS  Google Scholar 

  51. P. G. Nedkova, V. K. Tinchev and S. S. Yazadjiev, Shadow of a rotating traversable wormhole, Phys. Rev. D 88 (2013) no.12, 124019 [ar**v:1307.7647 [gr-qc]]

  52. M. Zhou, A. Cardenas-Avendano, C. Bambi, B. Kleihaus and J. Kunz, Search for astrophysical rotating Ellis wormholes with X-ray reflection spectroscopy, Phys. Rev. D 94 (2016) no.2, 024036 [ar**v:1603.07448 [gr-qc]]

  53. V. Dzhunushaliev, V. Folomeev, B. Kleihaus, J. Kunz, Mixed neutron star-plus-wormhole systems: equilibrium configurations. Phys. Rev. D 85, 124028 (2012). [ar**v:1203.3615 [gr-qc]]

    Article  ADS  Google Scholar 

  54. V. Dzhunushaliev, V. Folomeev, B. Kleihaus and J. Kunz, Mixed neutron-star-plus-wormhole systems: Linear stability analysis, Phys. Rev. D 87 (2013) 10, 104036 [ar**v:1302.5217 [gr-qc]]

  55. A. Aringazin, V. Dzhunushaliev, V. Folomeev, B. Kleihaus, J. Kunz, Magnetic fields in mixed neutron-star-plus-wormhole systems. JCAP 04, 005 (2015). [ar**v:1412.3194 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  56. V. Dzhunushaliev, V. Folomeev, B. Kleihaus, J. Kunz, Can mixed star-plus-wormhole systems mimic black holes? JCAP 08, 030 (2016). [ar**v:1601.04124 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  57. H.G. Ellis, Ether flow through a drainhole - a particle model in general relativity. J. Math. Phys. 14, 104–118 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  58. K.A. Bronnikov, Scalar-tensor theory and scalar charge. Acta Phys. Polon. B 4, 251–266 (1973)

    MathSciNet  Google Scholar 

  59. X. Y. Chew, B. Kleihaus and J. Kunz, Geometry of Spinning Ellis Wormholes, Phys. Rev. D 94 (2016) no.10, 104031 [ar**v:1608.05253 [gr-qc]]

  60. X. Y. Chew, B. Kleihaus and J. Kunz, Spinning Wormholes in Scalar-Tensor Theory, Phys. Rev. D 97 (2018) no.6, 064026 [ar**v:1802.00365 [gr-qc]]

  61. X. Y. Chew and K. G. Lim, Non-Abelian wormholes threaded by a Yang-Mills-Higgs field in the BPS limit, Phys. Rev. D 102 (2020) no.12, 124068 [ar**v:2009.13334 [gr-qc]]

  62. J. L. Blázquez-Salcedo, X. Y. Chew, J. Kunz and D. H. Yeom, Ellis wormholes in anti-de Sitter space, Eur. Phys. J. C 81 (2021) no.9, 858 [ar**v:2012.06213 [gr-qc]]

  63. T. Torii and H. a. Shinkai, Wormholes in higher dimensional space-time: Exact solutions and their linear stability analysis, Phys. Rev. D 88 (2013), 064027 [ar**v:1309.2058 [gr-qc]]

  64. S. Kar, S. Minwalla, D. Mishra, D. Sahdev, Resonances in the transmission of massless scalar waves in a class of wormholes. Phys. Rev. D 51, 1632–1638 (1995)

    Article  ADS  Google Scholar 

  65. V. Sharma, S. Ghosh, Generalised Ellis-Bronnikov wormholes embedded in warped braneworld background and energy conditions. Eur. Phys. J. C 81(11), 1–13 (2021)

    Article  ADS  Google Scholar 

  66. H. Culetu, Regular Schwarzschild-like spacetime embedded in a five dimensional bulk. Annals Phys. 433, 168582 (2021). [ar**v:2108.11953 [gr-qc]]

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Kar, Wormholes with a warped extra dimension?, [ar**v:2203.14631 [gr-qc]]

  68. T. Kaluza, Zum Unitätsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1921 (1921), 966-972 [ar**v:1803.08616 [physics.hist-ph]]

  69. O. Klein, Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English), Z. Phys. 37 (1926), 895

  70. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory: Volume 1, Introduction, (Cambridge Monographs on Mathematical Physics), 2012

  71. C. Furey, Standard model physics from an algebra?, [ar**v:1611.09182 [hep-th]]

  72. J. C. Baez, The Octonions, Bull. Am. Math. Soc. 39 (2002), 145-205 [erratum: Bull. Am. Math. Soc. 42 (2005), 213] [ar**v:math/0105155 [math.RA]]

  73. J.C. Baez, J. Huerta, Division algebras and supersymmetry II. Adv. Theor. Math. Phys. 15(5), 1373–1410 (2011). [ar**v:1003.3436 [hep-th]]

    Article  MathSciNet  MATH  Google Scholar 

  74. N. Furey, Three generations, two unbroken gauge symmetries, and one eight-dimensional algebra. Phys. Lett. B 785, 84–89 (2018). [ar**v:1910.08395 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  75. C. Furey, \(SU(3)_C\times SU(2)_L\times U(1)_Y\left( \times U(1)_X \right) \) as a symmetry of division algebraic ladder operators, Eur. Phys. J. C 78 (2018) no.5, 375 [ar**v:1806.00612 [hep-th]]

  76. A. B. Gillard and N. G. Gresnigt, Three fermion generations with two unbroken gauge symmetries from the complex sedenions, Eur. Phys. J. C 79 (2019) 5, 446 [ar**v:1904.03186]

  77. G.R. Dvali, G. Gabadadze, M. Porrati, 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B 485, 208–214 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. C. Deffayet, Cosmology on a brane in Minkowski bulk. Phys. Lett. B 502, 199–208 (2001)

    Article  ADS  MATH  Google Scholar 

  79. V.A. Rubakov, M.E. Shaposhnikov, Do we live inside a domain wall? Phys. Lett. B 125, 136–138 (1983)

    Article  ADS  Google Scholar 

  80. M. Gogberashvili, Our world as an expanding shell, EPL 49 (2000), 396-399 [ar**v:hep-ph/9812365 ]

  81. M. Gogberashvili, Int. J. Mod. Phys. D 11 (2002), 1635-1638 [ar**v:hep-ph/9812296 [hep-ph]]

  82. L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999), 3370-3373 [ar**v:hep-ph/9905221 [hep-ph]]

  83. L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999), 4690-4693 [ar**v:hep-th/9906064 [hep-th]]

  84. F.S.N. Lobo, A General class of braneworld wormholes. Phys. Rev. D 75, 064027 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  85. J.P. de Leon, Static wormholes on the brane inspired by Kaluza-Klein gravity. JCAP 11, 013 (2009). [ar**v:0910.3388 [gr-qc]]

    Article  MathSciNet  Google Scholar 

  86. K.C. Wong, T. Harko, K.S. Cheng, Inflating wormholes in the braneworld models. Class. Quant. Grav. 28, 145023 (2011). [ar**v:1105.2605 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. S. Kar, S. Lahiri, S. SenGupta, Can extra dimensional effects allow wormholes without exotic matter? Phys. Lett. B 750, 319–324 (2015). [ar**v:1505.06831 [gr-qc]]

    Article  ADS  MATH  Google Scholar 

  88. A. Banerjee, P. H. R. S. Moraes, R. A. C. Correa and G. Ribeiro, Wormholes in Randall-Sundrum braneworld, [ar**v:1904.10310 [gr-qc]]

  89. D. Wang and X. H. Meng, Traversable braneworld wormholes supported by astrophysical observations, Front. Phys. (Bei**g) 13 (2018) no.1, 139801 [ar**v:1706.06756 [gr-qc]]

  90. V. Sharma and S. Ghosh, Geodesics in Generalised Ellis-Bronnikov Spacetime Embedded in Warped 5D Background, [ar**v:2205.05973 [gr-qc]]

  91. V. Dzhunushaliev, V. Folomeev, M. Minamitsuji, Thick brane solutions. Rept. Prog. Phys. 73, 066901 (2010). [ar**v:0904.1775 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. R. Koley and S. Kar, Scalar kinks and fermion localisation in warped spacetimes, Class. Quant. Grav. 22 (2005) no.4, 753-768 [ar**v:hep-th/0407158 [hep-th]]

  93. X.H. Zhang, Y.X. Liu, Y.S. Duan, Localization of fermionic fields on braneworlds with bulk tachyon matter. Mod. Phys. Lett. A 23, 2093–2101 (2008). [ar**v:0709.1888 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. S. Ghosh, S. Kar, Bulk spacetimes for cosmological braneworlds with a time-dependent extra dimension. Phys. Rev. D 80, 064024 (2009). [ar**v:0812.1666 [gr-qc]]

    Article  ADS  Google Scholar 

  95. S. Ghosh, S. Kar, H. Nandan, Confinement of test particles in warped spacetimes. Phys. Rev. D 82, 024040 (2010). [ar**v:0904.2321 [gr-qc]]

    Article  ADS  Google Scholar 

  96. S. Kar, S. SenGupta, The Raychaudhuri equations: a Brief review. Pramana 69, 49 (2007). [ar**v:gr-qc/0611123 [gr-qc]]

    Article  ADS  Google Scholar 

  97. E. Poisson, A relativist’s toolkit: the mathematics of black-hole mechanics, https://doi.org/10.1017/CBO9780511606601

  98. S. Ghosh, A. Dasgupta, S. Kar, Geodesic congruences in warped spacetimes. Phys. Rev. D 83, 084001 (2011). [ar**v:1008.5008 [gr-qc]]

    Article  ADS  Google Scholar 

  99. C.S.J. Pun, Z. Kovacs, T. Harko, Thin accretion disks onto brane world black holes. Phys. Rev. D 78, 084015 (2008). [ar**v:0809.1284 [gr-qc]]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Ghosh.

Appendix

Appendix

1.1 Boundary conditions to determine ESR profiles in 4D-GEB spacetimes

\(k = \sqrt{3}\), \(h = 0 \); \(t(0) = 0\), \(l(0) = 0\), \(\theta (0) = \pi /2\), \(\phi (0) = 0\) ;

\(\dot{t}(0) = k \), \(\dot{l}(0) = 1.41421\), \(\dot{\theta }(0) = 0\), \(\dot{\phi }(0) = \frac{h}{(1 + l(0)^{m})^{2/m}} = 0 \) ;

\(B_{AB}(0) = 0\) for without rotation and (initially \(\theta \), \(\Sigma _{AB}\) and \(\Omega _{AB}\) is zero) ;

For with rotation case: \(\theta \) and \(\Sigma _{AB}\) are zero at \(\lambda =0\) but nonzero \(\Omega _{AB}\) are chosen such that \(\Omega _{AB}u^{B} = 0 = u^{A}\Omega _{AB}\) at \(\lambda = 0\)

1.2 Boundary conditions to determine ESR profiles in 5D-WGEB spacetimes with growing warp factor

\(T = \sqrt{3}\), \(H = 0 \); \(t(0) = 0\), \(l(0) = 0\), \(\theta (0) = \pi /2\), \(\phi (0) = 0\), \(y(0) = 0.1 \) ;

\(\dot{t}(0) = \frac{T}{e^{2f(y)}} = 1.71485 \), \(\dot{l}(0) = 1.39665 \), \(\dot{\theta }(0) = 0\), \(\dot{\phi }(0) = \frac{H}{(1 + l(0)^{m})^{2/m}} = 0 \),\( \dot{y}(0) = 0 \) ;

\(B_{AB}(0) = 0\) for without rotation that implies \(\theta (0)\), \(\Sigma _{AB}(0)\) and \(\Omega _{AB}(0)\) is zero ;

For with rotation case: \(\theta \) and \(\Sigma _{AB}\) are zero at \(\lambda =0\) but nonzero \(\Omega _{AB}\) are chosen such that \(\Omega _{AB}u^{B} = 0 = u^{A}\Omega _{AB}\) at \(\lambda = 0\)

1.3 Boundary conditions to determine ESR profiles in 5D-WGEB spacetimes with decaying warp factor

\(T = \sqrt{3}\), \(H = 0 \) ; \(t(0) = 0\), \(l(0) = 0\), \(\theta (0) = \pi /2\), \(\phi (0) = 0\), \(y(0) = 0.1 \) ;

\(\dot{t}(0) = \frac{T}{e^{2f(y)}} = 1.74943 \), \(\dot{l}(0) = 1.43195 \), \(\dot{\theta }(0) = 0\), \(\dot{\phi }(0) = \frac{H}{(1 + l(0)^{m})^{2/m}} = 0 \),\( \dot{y}(0) = 0 \) ;

\(B_{AB}(0) = 0\) for without rotation that implies \(\theta (0)\), \(\Sigma _{AB}(0)\) and \(\Omega _{AB}(0)\) is zero ;

For with rotation case: initially \(\theta \) and \(\Sigma _{AB}\) are still zero but nonzero \(\Omega _{AB}\) are chosen such that \(\Omega _{AB}u^{B} = 0 = u^{A}\Omega _{AB}\) at \(\lambda = 0\)

1.4 Boundary conditions for evolution of cross-sectional area in 4D-GEB spacetimes

\(k = \sqrt{3}\), \(h = \sqrt{\frac{k^{2} - 1 }{2}} = 1\) ; \(t(0) = 0\), \(l(0) = 0 \), \(\theta (0) = \pi /2\), \(\phi (0) = 0\) ;

\(\dot{t}(0) = k\), \( \dot{l}(0) = 1\), \(\dot{\theta }(0) = 0\), \(\dot{\phi }(0) = \frac{h}{(1 + l(0)^{m})^{2/m}} = h = 1 \) ;

\(\dot{l}(0)\) is calculated from the timelike geodesic constraint ;

\(B_{AB}(0) = 0\) ; \(\xi ^{1}(0) = \pm 1\), \(\xi ^{2}(0) = 0\), \(\xi ^{3}(0) = \pm 1\) ;

\(\xi ^{0}(0) = \pm \frac{2}{\sqrt{3}}, 0\) is calculated from \(u_{A}\xi ^{A} = 0\).

1.5 Boundary conditions to determine evolution of cross-sectional area in 5D-WGEB spacetimes with growing warp factor

\(t(0) = 0\), \(l(0) = 0\), \(\theta (0) = \pi /2\), \(\phi (0) = 0\), \(y(0) = a = 0.1\) ;

\(\dot{t}(0) = T\), \( \dot{l}(0) = 0.98758 \) , \(\dot{\theta }(0) = 0\), \(\dot{\phi }(0) = \frac{H}{\cosh (a)^{2}(1 + l(0)^{m})^{2/m}} = 0.98758\), \(\dot{y}(0) = b = 0\) ;

\(T = \sqrt{3}\), \(H = \sqrt{\frac{k^{2} - \cosh (a)^{2}(b^{2} + 1)}{2}} = 0.997489\) ;

\(B_{\mu \nu }(0) = 0\) , where \(\mu \) and \(\nu \) runs from 0 to 4 ;

\(\xi ^{1}(0) = \pm \frac{1}{\cosh (a)} = \pm 0.995021\), \(\xi ^{2}(0) = 0\), \(\xi ^{3}(0) = \pm \frac{1}{\cosh (a)} = \pm 0.995021\), \(\xi ^{4}(0) = \pm \frac{1}{\cosh (a)} = \pm 0.995021\) ;

\(\xi ^{0}(0) = \pm 1.19213, \pm 0.0574475\) is calculated from \(u_{A}\xi ^{A} = 0\).

1.6 Boundary conditions to determine evolution of cross-sectional area in 5D-WGEB spacetimes with decaying warp factor

\(t(0) = 0\), \(l(0) = 0\), \(\theta (0) = \pi /2\), \(\phi (0) = 0\), \(y(0) = a = 0.1\) ;

\(\dot{t}(0) = T\), \(\dot{l}(0) = 1.01254 \) , \(\dot{\theta }(0) = 0\), \(\dot{\phi }(0) = \frac{H}{\mathrm{sech}(a)^{2} (1 + l(0)^{m})^{2/m}} = 1.01254\), \(\dot{y}(0) = b = 0\) ;

\(T = \sqrt{3}\), \(H = \sqrt{\frac{k^{2} - \mathrm{sech}(a)^{2}(b^{2} + 1)}{2}} = 1.00248\) ;

\(\xi ^{1}(0) = \pm \frac{1}{\mathrm{sech}(a)} = \pm 1.005\), \(\xi ^{2}(0) = 0\), \(\xi ^{3}(0) = \pm \frac{1}{\mathrm{sech}(a)} = \pm 1.005 = \xi ^{4}(0)\) ;

\(\xi ^{0}(0) = \pm 1.23305, \pm 0.0580239 \) is calculated from \(u_{A}\xi ^{A} = 0\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Ghosh, S. Geodesic congruences in 5D warped Ellis–Bronnikov spacetimes. Eur. Phys. J. Plus 137, 881 (2022). https://doi.org/10.1140/epjp/s13360-022-03086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03086-8

Navigation