Log in

Binding energies and current density of heavy-hole trions of monolayer transition metal dichalcogenides: analytical perturbation treatment of Coulomb interaction with 2D H-like basis set

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Heavy-hole trions of transition metal dichalcogenides (TMDCs) have 2D counterpart \(H^{-}\). Thus, 2D He-isoelectronic ions can be the ideal model for it even within Born–Oppenheimer (BO) approximation depending on versatile mass ratios. Schr\(\ddot{o}\)dinger equation of such systems is a long-standing problem because of secular divergence of Coulomb interactions. Analytical description of Coulomb (exchange) potential by algebraic-calculus Green’s function multipole expansion for ground-state energy (GSE) of 2D He-isoelectronic ions and binding energies of TMDCs has become one of indispensable methods. Employing associated Laguerre polynomial and Whittaker-M or Bessel functions in planar hydrogenic orbitals furnishes exact, terminable, simple and finitely summed integrals in terms of Lauricella functions for multipoles and also remedies the difficulties due to different scaling factors of higher-order perturbation calculations. Monopole and dipole factors are exploited upto third-order perturbation corrections of GSE with singly and doubly excited hydrogenic orbitals. The orbitals with circular and dumbbell symmetries exhibit GSEs differing 1.82% from reported results for 2D He atom. Binding energies of heavy-hole trions of TMDCs are observed to be in good agreement with the experimentally reported results.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. (Authors’ comment: The authors confirm that the data supporting the findings of this study are available within the article).

References

  1. A. Görlitz, J.M. Vogels, A.E. Leanhardt, C. Raman, T.L. Gustavson, J.R. Abo-Shaeer, A.P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, W. Ketterle, Phys. Rev. Lett. 87, 130402 (2001)

    Article  ADS  Google Scholar 

  2. A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, A. Geim, Rev. Mod. Phys. 81 (2007). https://doi.org/10.1103/RevModPhys.81.109

  3. A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012)

    Article  ADS  Google Scholar 

  4. M. Durnev, M. Glazov, Phys. Uspekhi 61 (2017). https://doi.org/10.3367/UFNe.2017.07.038172

  5. A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, T.F. Heinz, Phys. Rev. Lett. 113, 076802 (2014)

    Article  ADS  Google Scholar 

  6. M. Ugeda, A. Bradley, S. Shi, F. da Jornada, Y. Zhang, D. Qiu, W. Ruan, S. Mo, Z. Hussain, Z. Shen, F. Wang, S. Louie, M. Crommie, Nat. Mater. 13, 1091 (2014)

    Article  ADS  Google Scholar 

  7. K. Mak, K. He, C. Lee, G. Lee, J. Hone, T. Heinz, J. Shan, Nat. Mater. 12, 207 (2013)

    Article  ADS  Google Scholar 

  8. Y. You, X. Zhang, Y. Berkelbach, et al. , Nat. Phys. 11, 477–481 (2015)

  9. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  10. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88, 045318 (2013)

    Article  ADS  Google Scholar 

  11. I. Kylänpää, H.-P. Komsa, Phys. Rev. B 92, 205418 (2015)

    Article  ADS  Google Scholar 

  12. M.Z. Mayers, T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 92, 161404 (2015)

    Article  ADS  Google Scholar 

  13. A. Arora, T. Deilmann, T. Reichenauer, J. Kern, S. Michaelis de Vasconcellos, M. Rohlfing, R. Bratschitsch, Phys. Rev. Lett. 123, 167401 (2019)

    Article  ADS  Google Scholar 

  14. K. Varga, D. Kidd, D. Zhang, Nano Lett. (2015). https://doi.org/10.1021/acs.nanolett.5b03009

  15. D.W. Kidd, D.K. Zhang, K. Varga, Phys. Rev. B 93, 125423 (2016)

    Article  ADS  Google Scholar 

  16. J. Yan, K. Varga, Phys. Rev. B (2020). https://doi.org/10.1103/PhysRevB.101.235435

  17. S.-Y. Shiau, M. Combescot, Y.-C. Chang, Phys. Rev. B 86, 115210 (2012)

    Article  ADS  Google Scholar 

  18. C. Kittel, A.H. Mitchell, Phys. Rev. 96, 1488 (1954)

    Article  ADS  Google Scholar 

  19. I.R. Lapidus, Am. J. Phys. 50, 45 (1982)

    Article  ADS  Google Scholar 

  20. B. Zaslow, M.E. Zandler, Am. J. Phys. 35, 1118 (1967)

    Article  ADS  Google Scholar 

  21. W. Kohn, J.M. Luttinger, Phys. Rev. 98, 915 (1955)

    Article  ADS  Google Scholar 

  22. S.K. Adhikari, Am. J. Phys. 54, 362 (1986)

    Article  ADS  Google Scholar 

  23. X. Yang, S. Guo, F. Chan, K.W. Wong, W.-Y. Ching, Phys. Rev. A 43, 1186 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Parfitt, M. Portnoi, AIP J. Math. Phys. (2002). https://doi.org/10.1063/1.1503868

    Article  Google Scholar 

  25. V.V. Skobelev, S.V. Kopylov, Russ. Phys. J. 61, 1597 (2019)

    Article  Google Scholar 

  26. S.H. Patil, Eur. J. Phys. 29, 517 (2008)

    Article  Google Scholar 

  27. J.M. Kosterlitz, D.J. Thouless, J. Phys. C Solid State Phys. 6, 1181 (1973)

    Article  ADS  Google Scholar 

  28. J. Dash, Phys. Rep. 38, 177 (1978)

    Article  ADS  Google Scholar 

  29. H. Kaur, S. Singh, P. Aggarwal, S. Sharma, S. Yadav, R.K. Hazra, ACS Omega 2, 7410 (2017). https://doi.org/10.1021/acsomega.7b00886

    Article  Google Scholar 

  30. H. Kaur, S. Sharma, P. Aggarwal, R.K. Hazra, Phys. E Low-Dimens. Syst. Nanostruct. 108, 347 (2019)

    Article  ADS  Google Scholar 

  31. S. Singh, H. Kaur, S. Sharma, P. Aggarwal, R.K. Hazra, Phys. E Low-Dimens. Syst. Nanostruct. 88, 289 (2017)

    Article  ADS  Google Scholar 

  32. S. Sharma, P. Aggarwal, R.K. Hazra, Mol. Phys. (2020). https://doi.org/10.1080/00268976.2020.1770881

  33. S. Sharma, B. Kapil, P. Aggarwal, R.K. Hazra, Phys. Open 11, 100107 (2022)

    Article  Google Scholar 

  34. J. Dutta, S. Mukherjee, K. Naskar, S. Ghosh, B. Mukherjee, S. Ravi, S. Adhikari, Phys. Chem. Chem. Phys. 22, 27496 (2020)

    Article  Google Scholar 

  35. M. Baer, Phys. Rep. 358, 75 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  36. B. Mukherjee, K. Naskar, S. Mukherjee, S. Ghosh, T. Sahoo, S. Adhikari, Int. Rev. Phys. Chem. 38, 287 (2019). https://doi.org/10.1080/0144235X.2019.1672987

    Article  Google Scholar 

  37. R.P. Feynman, Phys. Rev. 56, 340 (1939)

    Article  ADS  Google Scholar 

  38. W. Lichten, Phys. Rev. 164, 131 (1967)

    Article  ADS  Google Scholar 

  39. F.T. Smith, Phys. Rev. 179, 111 (1969)

    Article  ADS  Google Scholar 

  40. D.J. Griffiths, Introduction to Electrodynamics; 4th ed. (Pearson, Boston, 2013); re-published by Cambridge University Press in 2017

  41. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975)

    MATH  Google Scholar 

  42. F. Caruso, V. Oguri, F. Silveira, A. Troper, EPL 128, 22001 (2019)

    Article  ADS  Google Scholar 

  43. F. Caruso, A. Troper, V. Oguri, F. Silveira, Eur. Phys. J. D 74, 240 (2020)

    Article  ADS  Google Scholar 

  44. F. Caruso, V. Oguri, F. Silveira, Phys. E Low-Dimens. Syst. Nanostruct. 105, 182–185 (2019)

    Article  ADS  Google Scholar 

  45. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, 1977)

  46. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, 4th edn. (Academic Press, San Diego, 1995)

    MATH  Google Scholar 

  47. H. Eyring, J. Walter, G. Kimball, Quantum Chemistry (Wiley, 1947)

  48. C. Zhang, H. Wang, W. Chan, C. Manolatou, F. Rana, Phys. Rev. B 89, 205436 (2014)

    Article  ADS  Google Scholar 

  49. Y. Zhang, H. Li, H. Wang, R. Liu, S.-L. Zhang, Z.-J. Qiu, ACS Nano 9, 8514 (2015)

    Article  Google Scholar 

  50. A. Singh, G. Moody, S. Wu, Y. Wu, N.J. Ghimire, J. Yan, D.G. Mandrus, X. Xu, X. Li, Phys. Rev. Lett. 112, 216804 (2014)

    Article  ADS  Google Scholar 

  51. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88, 045318 (2013)

    Article  ADS  Google Scholar 

  52. A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, T.F. Heinz, Phys. Rev. Lett. 113, 076802 (2014)

    Article  ADS  Google Scholar 

  53. A. Arora, T. Deilmann, T. Reichenauer, J. Kern, S. Michaelis de Vasconcellos, M. Rohlfing, R. Bratschitsch, Phys. Rev. Lett. 123, 167401 (2019)

    Article  ADS  Google Scholar 

  54. A. Srivastava, M. Sidler, A.V. Allain, D.S. Lembke, A. Kis, A. Imamoğlu, Nat. Phys. 11, 66 (2015)

    Article  Google Scholar 

  55. S. Chen, T. Goldstein, T. Taniguchi, W.K., J. Yan, Nat. Commun. 9, 3717 (2018)

  56. H. Kaur, S. Sharma, P. Aggarwal, R.K. Hazra, Phys. E Low-Dimens. Syst. Nanostruct. 108, 347 (2019)

    Article  ADS  Google Scholar 

  57. J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. **ao, W. Yao, X. Xu, Nat. Commun. 4, 66 (2013)

    Article  Google Scholar 

  58. R. Shankar, Principles Of Quantum Mechanics (Springer, 1977)

  59. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, 1968)

  60. A. Erdélyi, Monatshefte für Mathematik und Physik 46, 1 (1937)

    Article  MathSciNet  Google Scholar 

  61. V.F. Tarasov, Int. J. Mod. Phys. B 24, 4181 (2010)

    Article  ADS  Google Scholar 

  62. A. Cerquetti, Ar**v e-prints (2010). ar**v:1012.1243 [math.PR]

  63. H. Buchholz, The Confluent Hypergeometric Function with Special Emphasis on Its Applications (Springer, 1969), p. 15

Download references

Acknowledgements

We express our sincere thanks to Professor Shankar Prasad Bhattacharyya for valuable discussion. Our sincere thanks go to CSIR (SRF scheme) and FRP Grant under Institution of Eminence, University of Delhi (Ref. No./IoE/2021/12/FRP), for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kuntal Hazra.

Appendices

Appendix 1: 2D Coulomb interaction and Green\('\)s function expansion (algebraic-calculus approach)

The free electrostatic Green\('\)s function expansion of 2D Coulomb interaction reads as [41]:

$$\begin{aligned} \text {ln}\bigg (\frac{1}{r_i^2+r_j^2-2r_ir_jcos(\phi _i-\phi _j)}\bigg )^{1/2}&=\text {ln}\bigg (\frac{1}{r_{>}}\bigg )+\sum _{m=1}^{\infty }\frac{1}{m} \bigg (\frac{r_{<}}{r_{>}}\bigg )^mcos[m(\phi _i-\phi _j)]\\ &\Rightarrow \text {ln}\bigg (\frac{1}{r_i^2+r_j^2-2r_ir_jcos(\phi _i-\phi _j)}\bigg )^{1/2} \bigg /\bigg (\frac{1}{r_{>}}\bigg )=\sum _{m=1}^{\infty }\frac{1}{m} \bigg (\frac{r_{<}}{r_{>}}\bigg )^mcos[m(\phi _i-\phi _j)]\\ & \Rightarrow \bigg (\frac{1}{r_i^2+r_j^2-2r_ir_jcos(\phi _i-\phi _j)}\bigg )^{1/2}\bigg / \bigg (\frac{1}{r_{>}}\bigg )=\text {exp}\bigg (\sum _{m=1}^{\infty } \frac{1}{m}\bigg (\frac{r_{<}}{r_{>}}\bigg )^mcos[m(\phi _i-\phi _j)] \bigg )\\ &\quad=\text {exp}\bigg (\sum _{m=1}^{\infty }x^mB_m(\phi )\bigg ) \end{aligned}$$
(46)

where \(x=\big (\frac{r_{<}}{r_{>}}\big )\), \(B_m(\phi )=\frac{T_m(cos(\phi ))}{m}, \phi =\phi _i-\phi _j\) and \(T_m(cos(\phi ))\) is the Chebyshev Polynomial.

$$\begin{aligned} \Rightarrow \text {exp}\bigg [\sum _{m=1}^{\infty }\frac{1}{m}\bigg (\frac{r_{<}}{r_{>}}\bigg )^mcos[m(\phi _i-\phi _j)]\bigg ]&=1+\sum _{m=1}^{\infty } \frac{1}{m}\bigg (\frac{r_{<}}{r_{>}}\bigg )^mcos[m(\phi _i -\phi _j)]+\frac{1}{2!}\bigg [\sum _{m=1}^{\infty }\frac{1}{m} \bigg (\frac{r_{<}}{r_{>}}\bigg )^mcos[m(\phi _i-\phi _j)]\bigg ]^2\\ &\quad+\frac{1}{3!}\bigg [\sum _{m=1}^{\infty }\frac{1}{m} \bigg (\frac{r_{<}}{r_{>}}\bigg )^mcos[m(\phi _i-\phi _j)]\bigg ]^3 +\cdots+f_k+\cdots+f_\infty \end{aligned}$$
(47)

where

$$f_k=\frac{1}{k!}\bigg (\sum _{m=1}^{\infty }x^mB_m(\phi )\bigg )^k$$

Therefore, it is clearly seen from Eq. (47) that it can be expanded in polynomial expansion of x as:

$$\sum _{q=0}^{\infty }A_q(\phi )x^q=\sum _{k=0}^{\infty }f_k(x,\phi )$$
(48)

Differentiating Eq. (48) w.r.t. x n-times,

$$\sum _{q=n}^{\infty }{^{q}}P_{n}A_q(\phi )x^{q-n} =\sum _{k=0}^{\infty }f_k^{(n)}(x,\phi )$$
(49)

Now \(f_k\) can be written as:

$$\begin{aligned} f_k&=\frac{1}{k!}\bigg (\mathop {\sum \limits _{r_1,r_2,\ldots ,r_\infty }}\nolimits ^{\!\!\!\!\!\!\!\!\!'} \frac{k!}{r_1!,r_2!,\ldots ,r_\infty !}\prod _{m=1}^{\infty }(x^mB_m(\phi ))^{r_m}\bigg )\\ f_k&=\frac{1}{k!}\bigg (\mathop {\sum \limits _{r_1,r_2,\ldots ,r_\infty }}\nolimits ^{\!\!\!\!\!\!\!\!\!'}\frac{k!}{\prod r_m!}\bigg (\prod _{m=1}^{\infty }(B_m(\phi ))^{r_m}\bigg )x^M\bigg )\end{aligned}$$
(50)

where \(M=\sum _{m=1}^{\infty }mr_m\). The nth derivative of \(f_k\) w.r.t. x can be written as:

$$f_k^{(n)}=\frac{1}{k!}\bigg (\mathop {\sum \limits _{r_1,r_2,\ldots ,r_\infty }}\nolimits ^{\!\!\!\!\!\!\!\!\!'}\frac{k!}{\prod r_m!}\bigg (\prod _{m=1}^{\infty }(B_m(\phi ))^{r_m}\bigg ) {^M}P_{n}x^{M-n}\bigg )$$
(51)

Substituting Eq. (51) in Eq. (49):

$$\sum _{q=n}^{\infty }{^{q}}P_{n}A_q(\phi )x^{q-n}=\sum _{k=0}^{\infty } \bigg (\mathop {\sum \limits _{r_1,r_2,\ldots ,r_\infty }}\nolimits ^{\!\!\!\!\!\!\!\!\!'}\frac{1}{\prod r_m!}\bigg (\prod _{m=1}^{\infty }(B_m(\phi ))^{r_m}\bigg ){^M}P_{n}x^{M-n}\bigg )$$
(52)

Letting \(x=0\), terms with \(q>n\) and \(M>n\) on L.H.S. and R.H.S., respectively, vanish.

$$A_n(\phi )=\sum _{k=0}^{\infty }\bigg (\mathop {\sum \limits _{r_1,r_2,\ldots ,r_\infty }}\nolimits ^{\!\!\!\!\!\!\!\!\!'} \frac{1}{\prod r_m!}\bigg (\prod _{m=1}^{\infty }(B_m(\phi ))^{r_m}\bigg )\bigg )$$
(53)

From Eq. (53), it can easily be evaluated that for monopole (\(n=0\))\(\Rightarrow\) \(A_0=1\), dipole (\(n=1\))\(\Rightarrow\) \(A_1=cos(\phi )\), quadrupole (\(n=2\))\(\Rightarrow\) \(A_2=\frac{cos^2(\phi )+cos(2\phi )}{2}=\frac{3cos^2(\phi )-1}{2}\), octupole (\(n=3\))\(\Rightarrow\) \(A_3=\frac{cos^3(\phi )+3cos(\phi )cos(2\phi )+2cos(3\phi )}{6}=\frac{5cos^3(\phi ) -3cos(\phi )}{2}\) and so on. It is clear from Eq. (53) that \(A_n(\phi ) = P_n(\cos (\phi ))\), Legendre Polynomial. This is unprecedentedly improvised explicit relation between Chebyshev and Legendre polynomials, best to our knowledge. We believe that applying principle of mathematical induction, 2D Coulomb potential can be conjectured as:

$$\frac{1}{|\overrightarrow{r_i}-\overrightarrow{r_j}|}=\sum _{l=0}^{\infty } \frac{r_{<}^l}{r_{>}^{l+1}}P_l(cos(\phi _i-\phi _j))$$
(54)

Appendix 2: Dipole factor (\(l=1\))

On substituting the values of \(I_1\) and \(I_2\) in Eq. (31) and taking \(\xi (\alpha _1r_i)\) and \(\xi (\alpha '_1r_i)\) in Whittaker-M function form, the integrals \(I_s\) and \(I_g\) become:

$$\begin{aligned} I_s&= \frac{BB'NN'}{(\alpha _1\alpha '_1)^{1/2}\,\alpha _2^3} \sum _{k_1=0}^{\mathscr {N}_2}\sum _{k_2=0}^{{\mathscr {N}}'_2}\frac{(-1)^{k_1+k_2}}{k_1!\,k_2!}\,(D+2)!\,w^{(|m'_2|+k_1)} g^{(D+3)}\left( {\begin{array}{c}n_2+|m_2|-1\\ 2|m_2|+k_1\end{array}}\right) \left( {\begin{array}{c}n'_2+|m'_2|-1\\ 2|m'_2|+k_2\end{array}}\right) \\ &\quad\times \bigg [\underbrace{\int _{0}^{\infty }r_i^{-2}M_{\kappa _1,\nu _1} (\alpha _1r_i)M_{\kappa '_1,\nu '_1}(\alpha '_1r_i)}_{I_{s_a}}-\sum _{s=0}^{(D+4)} \frac{1}{s!}\bigg (\frac{\alpha _2}{g}\bigg )^s \underbrace{\int _{0}^{\infty }r_i^{s-2}e^{-(\frac{w+1}{2}\alpha _2r_i)} M_{\kappa _1,\nu _1}(\alpha _1r_i)M_{\kappa '_1,\nu '_1}(\alpha '_1r_i)}_{I_{s_b}}\bigg ]\end{aligned}$$
(55)
$$\begin{aligned} I_g&= \frac{BB'NN'}{(\alpha _1\alpha '_1)^{1/2}\,} \sum _{k_1=0}^{\mathscr {N}_2}\sum _{k_2=0}^{{\mathscr {N}}'_2}\frac{(-1)^{k_1+k_2}}{k_1!\,k_2!} \,(D-1)!\,w^{(|m'_2|+k_1)}\,g^{(D)} \left( {\begin{array}{c}n_2+|m_2|-1\\ 2|m_2|+k_1\end{array}}\right) \left( {\begin{array}{c}n'_2+|m'_2|-1\\ 2|m'_2|+k_2\end{array}}\right) \bigg [\sum _{s=0}^{(D-1)}\frac{1}{s!}\bigg (\frac{\alpha _3}{g}\bigg )^s \\ &\quad\times \underbrace{\int _{0}^{\infty }r_i^{s+1}e^{-(\frac{w+1}{2}\alpha _2r_i)} M_{\kappa _1,\nu _1}(\alpha _1r_i)M_{\kappa '_1,\nu '_1}(\alpha '_1r_i)}_{I_{g_a}}\bigg ]\end{aligned}$$
(56)

Employing the standard integral (Eq. (64)) to solve \(I_{s_a}, I_{s_b}\) and \(I_{g_a}\) results in the following finite double summed forms.

For \({{\varvec{I}}}_{{{\varvec{s}}}_{{\varvec{a}}}}, \varrho = -1, c=0, a_1 = \alpha _1, a_2 = \alpha '_1, A = \frac{1}{2}(\alpha _1+\alpha _2), c+A = \frac{\alpha _1+\alpha '_1}{2}, \gamma _1 = |m_1|+\frac{1}{2}, \gamma _2 = |m'_1|+\frac{1}{2}, M = \gamma _1+\gamma _2 = |m_1|+|m'_1|+1, \kappa _1=n_1-\frac{1}{2}, \kappa '_1=n'_1-\frac{1}{2}\):

$$I_{s_a}=\alpha _1^{(|m_1|+\frac{1}{2})}(\alpha '_1)^{(|m_1|+\frac{1}{2})}\bigg (\frac{\alpha _1+\alpha _2}{2}\bigg )^{-(|m_1|+|m'_1|)}\Gamma \left( |m_1|+|m'_1|\right) \sum _{p=0}^{{\mathscr {N}}_1}\sum _{q=0}^{{\mathscr {N}}'_1}\frac{(|m_1|+|m'_1|)_{(p+q)}(-{\mathscr {N}}_1)_p(-{\mathscr {N}}'_1)_q}{(2|m_1|+1)_p\,(2|m'_1|+1)_q \,p!\,q!}\bigg (\frac{2\alpha _1}{\alpha _1+\alpha '_1}\bigg )^p\bigg (\frac{2\alpha '_1}{\alpha _1+\alpha '_1}\bigg )^q$$
(57)

For \({{\varvec{I}}}_{{{\varvec{s}}}_{{\varvec{b}}}}, \varrho = s-1, c = \frac{(w+1)\alpha _2}{2}, a_1 = \alpha _1, a_2 = \alpha _2, A = \frac{1}{2}(\alpha _1+\alpha _2), c+A = \frac{(w+1)\alpha _2+\alpha _1+\alpha '_1}{2}, \gamma _1 = |m_1|+\frac{1}{2}, \gamma _2 = |m'_1|+\frac{1}{2}, M = \gamma _1+\gamma _2 = |m_1|+|m'_1|+1, \kappa _1=n_1-\frac{1}{2}, \kappa '_1=n'_1-\frac{1}{2}\):

$$\begin{aligned} I_{s_b}&=\alpha _1^{(|m_1|+\frac{1}{2})}(\alpha '_1)^{(|m_1|+\frac{1}{2})}\bigg (\frac{(w+1)\alpha _2+\alpha _1+\alpha _2}{2}\bigg )^{-(s+|m_1|+|m'_1|)}\Gamma \left( s+|m_1|+|m'_1|\right) \sum _{p=0}^{{\mathscr {N}}_1}\sum _{q=0}^{{\mathscr {N}}'_1}\frac{(s+|m_1|+|m'_1|)_{(p+q)}}{(2|m_1|+1)_p\,(2|m'_1|+1)_q}\\ &\quad\times \frac{(-{\mathscr {N}}_1)_p(-{\mathscr {N}}'_1)_q}{p!\,q!}\bigg (\frac{2\alpha _1}{(w+1)\alpha _2+\alpha _1+\alpha '_1}\bigg )^p\bigg (\frac{2\alpha '_1}{(w+1)\alpha _2+\alpha _1+\alpha '_1}\bigg )^q\end{aligned}$$
(58)

Similarly for \({{\varvec{I}}}_{{{\varvec{g}}}_{{\varvec{a}}}}, \varrho = s+2, c = \frac{(w+1)\alpha _2}{2}, a_1 = \alpha _1, a_2 = \alpha _2, A = \frac{1}{2}(\alpha _1+\alpha _2), c+A = \frac{(w+1)\alpha _2+\alpha _1+\alpha '_1}{2}, \gamma _1 = |m_1|+\frac{1}{2}, \gamma _2 = |m'_1|+\frac{1}{2}, M = \gamma _1+\gamma _2 = |m_1|+|m'_1|+1, \kappa _1=n_1-\frac{1}{2}, \kappa '_1=n'_1-\frac{1}{2}\):

$$\begin{aligned} I_{g_a}&=\alpha _1^{(|m_1|+\frac{1}{2})}(\alpha '_1)^{(|m_1|+\frac{1}{2})}\bigg (\frac{\alpha _1+\alpha _2}{2}\bigg )^{-(s+|m_1|+|m'_1|+3)}\Gamma \left( s+|m_1|+|m'_1|+3\right) \sum _{p=0}^{{\mathscr {N}}_1}\sum _{q=0}^{{\mathscr {N}}'_1}\frac{(s+|m_1|+|m'_1|+3)_{(p+q)}}{(2|m_1|+1)_p\,(2|m'_1|+1)_q \,}\\ &\quad\times \frac{(-{\mathscr {N}}_1)_p(-{\mathscr {N}}'_1)_q}{p!\,q!}\bigg (\frac{2\alpha _1}{(w+1)\alpha _2+\alpha _1+\alpha '_1}\bigg )^p\bigg (\frac{2\alpha '_1}{(w+1)\alpha _2+\alpha _1+\alpha '_1}\bigg )^q \end{aligned}$$
(59)

Substituting Eqs. (5759) in Eq. (31), we get:

$$\begin{aligned} I_s&=\frac{BB'NN'\alpha _1^{(|m_1|)}(\alpha '_1)^{(|m'_1|)}}{\alpha _2^3} \sum _{k_1=0}^{\mathscr {N}_2}\sum _{k_2=0}^{{\mathscr {N}}'_2} \frac{(-1)^{k_1+k_2}}{k_1!\,k_2!}\,(D+2)!\, w^{|m'_2|+k_1}\,g^{(D+3)}\left( {\begin{array}{c}n_2+|m_2|-1\\ 2|m_2|+k_1\end{array}}\right) \left( {\begin{array}{c}n'_2+|m'_2|-1\\ 2|m'_2|+k_2\end{array}}\right) \\ &\quad\times \bigg [\bigg (\frac{\alpha _1+\alpha _2}{2} \bigg )^{-(|m_1|+|m'_1|)}\Gamma \left( |m_1|+|m'_1|\right) \sum _{p=0}^{{\mathscr {N}}_1}\sum _{q=0}^{{\mathscr {N}}'_1} \frac{(|m_1|+|m'_1|)_{(p+q)}(-{\mathscr {N}}_1)_p(-{\mathscr {N}}'_1)_q}{(2|m_1|+1)_p\, (2|m'_1|+1)_q \,p!\,q!}\bigg (\frac{2\alpha _1}{\alpha _1+\alpha '_1}\bigg )^p \bigg (\frac{2\alpha '_1}{\alpha _1+\alpha '_1}\bigg )^q \\ &\sum _{s=0}^{(A-1)}\bigg (\frac{\alpha _1+\alpha _2}{2}\bigg )^{-(s+|m_1|+|m'_1|)} \Gamma \left( s+|m_1|+|m'_1|\right) \sum _{p=0}^{{\mathscr {N}}_1} \sum _{q=0}^{{\mathscr {N}}'_1}\frac{(s+|m_1|+|m'_1|)_{(p+q)(-{\mathscr {N}}_1)_p(-{\mathscr {N}}'_1)_q}}{(2|m_1|+1)_p\,(2|m'_1|+1)_q \,p!\,q!} \\ &\quad\times \bigg (\frac{2\alpha _1}{(w+1)\alpha _2+\alpha _1+\alpha '_1} \bigg )^p\bigg (\frac{2\alpha '_1}{(w+1)\alpha _2+\alpha _1+\alpha '_1}\bigg )^q\bigg ] \end{aligned}$$
(60)
$$\begin{aligned}I_g&=NN'BB'\alpha _1^{|m_1|}\alpha _1^{|m_1'|}\sum _{k_1=0}^{{\mathscr {N}}_2} \sum _{k_1=0}^{{\mathscr {N}}_2^{'}}\frac{(-1)^{k_1+k_2}}{k_1!\,k_2!}w^{(|m_2|+k_2)} g^{(D)}\left( {\begin{array}{c}n_2+|m_2|-1\\ 2|m_2|+k_1\end{array}}\right) \left( {\begin{array}{c}n_2+|m_2|-1\\ 2|m_2'|+k_2\end{array}}\right) \\ &\qquad\bigg [\sum _{s=0}^{(D-1)}\frac{1}{s!}\bigg (\frac{\alpha _2}{g} \bigg )^s\Gamma \left( s+|m_2|+|m_2^{'}|+3\right) \bigg (\frac{(w+1)\alpha _3+\alpha _1 +\alpha _2}{2}\bigg )^{-(s+|m_2|+|m_2'|+3)} \\ &\quad \times \sum _{p=0}^{{\mathscr {N}}_1} \sum _{q=0}^{{\mathscr {N}}_2}\frac{(s+|m_2|+|m_2'|+3)_{p+q} (-{\mathscr {N}}_1)_p(-{\mathscr {N}}_2)_q}{(2|m_1|+1)_p(2|m_1'|+1)_q\,p!\,q!} \bigg (\frac{2\alpha _1}{(w+1)\alpha _2+\alpha _1+\alpha _1'}\bigg )^p\bigg (\frac{2\alpha _1'}{(w+1)\alpha _2+\alpha _1+\alpha _1'}\bigg )^q\bigg ]\end{aligned}$$
(61)

Adding Eqs. (60) and (61) gives the exact value of the integral (Eq. (31)).

Appendix 3: Standard equations and integrals

Associated Laguerre Polynomial [46]

$$L^{\mu }_{k}(x)=\sum _{m=0}^{k}(-1)^m\frac{(\mu +k)!}{(k-m)!(\mu +m)!m!}x^m \text {where}\quad \mu >-1$$
(62)

Lower and Upper Incomplete Gamma function[46]

$$\begin{aligned}&\gamma (a,x)=\int _{0}^{x}e^{-t}t^{a-1}dt=(a-1)!\bigg (1-e^{-x} \sum _{s=0}^{a-1}\frac{x^s}{s!}\bigg ) \\ &\Gamma (a,x)=\int _{x}^{\infty }e^{-t}t^{a-1}dt=(a-1)!\bigg (e^{-x} \sum _{s=0}^{a-1}\frac{x^s}{s!}\bigg )\quad \text {where} \quad Re(a) \ge 0 \end{aligned}$$
(63)

Standard Integral-I (Erdélyi’s Integral) [60]

$$\begin{aligned} &\int _0^{\infty }x^{\left( \varrho -1\right) } e^{-cx}M_{\kappa _1,\gamma _1- \frac{1}{2}}(a_1x)M_{\kappa _2, \gamma _2-\frac{1}{2}}(a_2x) \mathrm{d}x =a_1^{\gamma _1}a_2^{\gamma _2}(c+A)^{-\varrho -M}\Gamma (\varrho +M) \\ & \quad F_2\left( \varrho +M;\gamma _1-\kappa _1,\gamma _2-\kappa _2;2\gamma _1,2 \gamma _2;\frac{a_1}{c+A},\frac{a_2}{c+A}\right) \end{aligned}$$
(64)

where \(Re(\varrho +M)>\)0, \(Re\left( c\pm \frac{1}{2}a_1\pm \frac{1}{2}a_2\right) >0\) and \(M = \gamma _1+\gamma _2\)

\(F_2\) to \(F_1\) relation [61]

$$F_{2}\left( \begin{array}{c} a,b,b' \\ c,c'\end{array}; {d,d'}\right) =\sum \limits _{k=0}^{\infty }\frac{(a)_k(b)_k \mathrm{d}^k}{(c)_k k!}{_{2}}F_{1}\left( \begin{array}{c} b',a+k \\ {c'}\end{array}; d' \right)$$
(65)

Chu-Vandermonde identity [62]

$${_{2}}F_{1}\left( \begin{array}{c} -b',a+k\\ {c'}\end{array}; {d'}\right) =\frac{(c'-(a+k))_{b'}}{(c')_{b'}} \quad \text {where}\quad Re(c') \ge 0\hbox { and }d'=1$$
(66)

Standard Integral-II (Erd\(\acute{e}\)lyi’s Integral) [63]

$$\int _0^{\infty } x^{\left( \sigma -1\right) }\,e^{-bx}\,L_{k_1}^{\mu _1}(a_1x)\,L_{k_2}^{\mu _2} (a_2x)\,\mathrm{d}x=(-1)^{(k_1+k_2)}\left( {\begin{array}{c}-(\mu _1+1)\\ k_1\end{array}}\right) \left( {\begin{array}{c}-(\mu _2+1)\\ k_2\end{array}}\right) \, b^{-\sigma }\,\Gamma (\sigma ) F_2\left( \sigma ;-k_1,-k_2;\mu _1+1,\mu _2+1;\frac{a_1}{b},\frac{a_2}{b}\right)$$
(67)

where \(Re(\sigma )>0, Re(b) >0\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapil, B., Sharma, S., Aggarwal, P. et al. Binding energies and current density of heavy-hole trions of monolayer transition metal dichalcogenides: analytical perturbation treatment of Coulomb interaction with 2D H-like basis set. Eur. Phys. J. Plus 137, 809 (2022). https://doi.org/10.1140/epjp/s13360-022-02970-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02970-7

Navigation