Log in

Note on episodes in the history of modeling measurements in local spacetime regions using QFT

  • Regular Article
  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The formulation of a measurement theory for relativistic quantum field theory (QFT) has recently been an active area of research. In contrast to the asymptotic measurement framework that was enshrined in QED, the new proposals aim to supply a measurement framework for measurements in local spacetime regions. This paper surveys episodes in the history of quantum theory that contemporary researchers have identified as precursors to their own work and discusses how they laid the groundwork for current approaches to local measurement theory for QFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It withers away rather than being completely abolished because non-scattering problems (e.g., bound state problems) were solved by starting from the S-matrix and reintroducing stationary or instantaneous states [8, p.77, fn 81].

  2. For a review of recent approaches to measurement in QFT and how they respond to Sorkin ‘impossible measurement’ scenarios, see [1]. For a discussion of some philosophical implications of measurement theory for QFT, see [10].

  3. Note that not all of this research is confined to measurements in local regions. For example, sometimes Gaussian smearing functions are used [17].

  4. A microscopic quantum mechanical system (such as a particle with spin or an atom) is commonly called a probe of the field, while the term detector is typically used for explicitly macroscopic detector systems (such as a superconducting qubit). Sometimes the terms ‘detector’ and ‘probe’ are used interchangeably, especially if it is not clear from the context whether the measuring system is microscopic or macroscopic.

  5. Haag and Kastler [35, p.851] remark that ‘[i]n any case it is rather evident that one can construct a good mathematical representative of a Geiger counter coincidence arrangement using the subalgebras for finite regions.’ Chapter VI of Haag’s book [40] provides a detailed justification for and qualification of this remark in terms of asymptotic particle representations, focusing on the difficulties raised by superselection rules, the infrared problem, and long-range correlations.

  6. Earman [48] points out that [47] was presented at the first Marcel Grossmann Meeting on General Relativity in 1975 and takes this to be the first public presentation of the Unruh effect.

  7. The pointlike model suffers from UV divergences that can be regulated through the introduction of suitable test functions [53].

  8. For a first-hand account of the origins of the International Society for Relativistic Quantum Information, see ‘How our society came into being’ by Bei-Lok Hu in https://www.isrqi.net.

  9. This is also a feature of histories-based formalisms (see [4, 61]).

References

  1. Papageorgiou, M., Fraser, D.: Eliminating the ‘impossible’: Recent progress on local measurement theory for quantum field theory (2023). http://philsci-archive.pitt.edu/22322/

  2. Fewster, C.J., Verch, R.: Quantum fields and local measurements. Commun. Math. Phys. 378(2), 851–889 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  3. Polo-Gómez, J., Garay, L.J., Martín-Martínez, E.: A detector-based measurement theory for quantum field theory. Physical Review D 105(6) (2022) https://doi.org/10.1103/physrevd.105.065003

  4. Anastopoulos, C., Hu, B.-L., Savvidou, K.: Quantum field theory based quantum information: Measurements and correlations. Annals of Physics 450, 169239 (2023). https://doi.org/10.1016/j.aop.2023.169239

    Article  MathSciNet  CAS  Google Scholar 

  5. Oeckl, R.: A local and operational framework for the foundations of physics. Advances in Theoretical and Mathematical Physics 23(2), 437–592 (2019)

    Article  MathSciNet  Google Scholar 

  6. Hidaka, Y., Iso, S., Shimada, K.: Complementarity and causal propagation of decoherence by measurement in relativistic quantum field theories. Phys. Rev. D 106, 076018 (2022) https://doi.org/10.1103/PhysRevD.106.076018

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Danielson, D.L., Satishchandran, G., Wald, R.M.: Gravitationally mediated entanglement: Newtonian field versus gravitons. Phys. Rev. D 105, 086001 (2022) https://doi.org/10.1103/PhysRevD.105.086001

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Blum, A.S.: The state is not abolished, it withers away: How quantum field theory became a theory of scattering. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 60 (2017) https://doi.org/10.1016/j.shpsb.2017.01.004

  9. Jubb, I.: Causal state updates in real scalar quantum field theory. Phys. Rev. D 105, 025003 (2022) https://doi.org/10.1103/PhysRevD.105.025003

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Fraser, D.: Some philosophical implications of measurement in quantum field theory (2023). Unpublished manuscript

  11. Smith, A.R.H.: Detectors, reference frames, and time. PhD thesis, University of Waterloo (2017). http://hdl.handle.net/10012/12618

  12. Sorkin, R.D.: Impossible measurements on quantum fields. In: Directions in General Relativity: Proceedings of the 1993 International Symposium, Maryland, vol. 2, pp. 293–305 (1993)

  13. Hu, B.L., Lin, S.-Y., Louko, J.: Relativistic quantum information in detectors-field interactions. Classical and Quantum Gravity 29(22), 224005 (2012) https://doi.org/10.1088/0264-9381/29/22/224005

    Article  ADS  MathSciNet  Google Scholar 

  14. Anastopoulos, C., Savvidou, N.: Time-of-arrival probabilities for general particle detectors. Phys. Rev. A 86, 012111 (2012) https://doi.org/10.1103/PhysRevA.86.012111

    Article  ADS  CAS  Google Scholar 

  15. Hümmer, D., Martín-Martínez, E., Kempf, A.: Renormalized Unruh-Dewitt particle detector models for boson and fermion fields. Phys. Rev. D 93, 024019 (2016) https://doi.org/10.1103/PhysRevD.93.024019

  16. Sabín, C., Rey, M., García-Ripoll, J.J., León, J.: Fermi problem with artificial atoms in circuit QED. Phys. Rev. Lett. 107, 150402 (2011) https://doi.org/10.1103/PhysRevLett.107.150402

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ramón, J., Papageorgiou, M., Martín-Martínez, E.: Causality and signalling in noncompact detector-field interactions. Phys. Rev. D 108, 045015 (2023) https://doi.org/10.1103/PhysRevD.108.045015

    Article  ADS  MathSciNet  Google Scholar 

  18. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963) https://doi.org/10.1103/PhysRev.130.2529

    Article  ADS  MathSciNet  Google Scholar 

  19. Borsten, L., Jubb, I., Kells, G.: Impossible measurements revisited. Physical Review D 104(2) (2021). ar**v:1912.06141. https://doi.org/10.1103/PhysRevD.104.025012

  20. Benincasa, D.M.T., Borsten, L., Buck, M., Dowker, F.: Quantum information processing and relativistic quantum fields. Classical and Quantum Gravity 31(7), 075007 (2014) https://doi.org/10.1088/0264-9381/31/7/075007

    Article  ADS  MathSciNet  Google Scholar 

  21. Ramón, J., Papageorgiou, M., Martín-Martínez, E.: Relativistic causality in particle detector models: Faster-than-light signaling and impossible measurements. Phys. Rev. D 103, 085002 (2021) https://doi.org/10.1103/PhysRevD.103.085002

    Article  ADS  MathSciNet  Google Scholar 

  22. Fewster, C.J., Verch, R.: Measurement in quantum field theory (2023). ar**v:2304.13356

  23. Bostelmann, H., Fewster, C.J., Ruep, M.H.: Impossible measurements require impossible apparatus. Phys. Rev. D 103, 025017 (2021) https://doi.org/10.1103/PhysRevD.103.025017

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Ruep, M.H.: Weakly coupled local particle detectors cannot harvest entanglement. Classical and Quantum Gravity (2021) ar**v:2103.13400. https://doi.org/10.1088/1361-6382/ac1b08

  25. Grimmer, D., Torres, B.d.S.L., Martín-Martínez, E.: Measurements in QFT: Weakly coupled local particle detectors and entanglement harvesting. Physical Review D 104(8), 085014 (2021) ar**v: 2108.02794. https://doi.org/10.1103/PhysRevD.104.085014

  26. Bohr, N., Rosenfeld, L.: Zur frage der messbarkeit der elektromagnetshen feldgrossen. Kgl. Danske Vidensk. Selskab. Math.-Fys. Medd 12, 3 (1933)

  27. Bohr, N., Rosenfeld, L.: Field and charge measurements in quantum electrodynamics. Phys. Rev. 78, 794–798 (1950) https://doi.org/10.1103/PhysRev.78.794

    Article  ADS  Google Scholar 

  28. Heisenberg, W.: The physical principles of the quantum theory: Transl. into Engl. by Carl Eckart and Frank C. Hoyt (1930)

  29. Landau, L., Peierls, R.: Erweiterung des unbestimmtheitsprinzips für die relativistische quantentheorie. Zeitschrift für Physik 69(1-2), 56–69 (1931)

    Article  ADS  Google Scholar 

  30. Hartz, T., Freire, O.: Uses and Appropriations of Niels Bohr’s Ideas About Quantum Field Measurement, 1930–1965 vol. 1, pp. 397–418 (2015)

  31. Cohen, R.S., Stachel, J.J.: Selected Papers of Léon Rosenfeld vol. 21. Springer,   (2012)

  32. Daneri, A., Loinger, A., Prosperi, G.M.: Quantum theory of measurement and ergodicity conditions. Nuclear physics 33, 297–319 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  33. Jacobsen, A.S.: Leon Rosenfeld: Physics, Philosophy, and Politics in the Twentieth Century. World Scientific, (2012)

  34. Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, (1955). First published in German in 1932: Mathematische Grundlagen der Quantenmechank, Berlin: Springer.

    Google Scholar 

  35. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Mathematical Phys. 5, 848–861 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  36. Haag, R.: Local algebras. a look back at the early years and at some achievements and missed opportunities. The European Physical Journal H 35(3), 255–261 (2010)

  37. Haag, R.: On quantum field theories. Danske Vid. Selsk. Mat.-Fys. Medd. 29(12), 37 (1955)

  38. Haag, R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. (2) 112, 669–673 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  39. Ruelle, D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta 35, 147–163 (1962)

    MathSciNet  Google Scholar 

  40. Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, (2012)

    Google Scholar 

  41. Hellwig, K.-E., Kraus, K.: Formal description of measurements in local quantum field theory. Phys. Rev. D 1, 566–571 (1970) https://doi.org/10.1103/PhysRevD.1.566

    Article  ADS  Google Scholar 

  42. Hellwig, K., Kraus, K.: Pure operations and measurements. Communications in Mathematical Physics 11(3), 214–220 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  43. Hellwig, K., Kraus, K.: Operations and measurements. II. Communications in Mathematical Physics 16(2), 142–147 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  44. Bloch, I.: Some relativistic oddities in the quantum theory of observation. Phys. Rev. 156, 1377–1384 (1967) https://doi.org/10.1103/PhysRev.156.1377

    Article  ADS  CAS  Google Scholar 

  45. Schlieder, S.: Some remarks on the change of state of relativistic quantum mechanical systems by measurement and on the locality requirement. Commun. Math. Phys. 7 (1968)

  46. Ludwig, G.: Gelöste und ungelöste probleme des meßprozesses in der quantenmechanik. In: Bopp, F. (ed.) Werner Heisenberg und die Physik Unserer Zeit, pp. 150–181. Vieweg+Teubner Verlag, Wiesbaden (1961)

    Chapter  Google Scholar 

  47. Unruh, W.G.: Particle detectors and black holes. In: Ruffini, R. (ed.) Proceedings of the First Marcel Grossmann Meeting on General Relativity, pp. 527–536. North-Holland, Amsterdam (1977)

  48. Earman, J.: The Unruh effect for philosophers. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42(2), 81–97 (2011) https://doi.org/10.1016/j.shpsb.2011.04.001

    Article  ADS  MathSciNet  Google Scholar 

  49. Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977) https://doi.org/10.1103/PhysRevD.15.2738

    Article  ADS  MathSciNet  Google Scholar 

  50. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976) https://doi.org/10.1103/PhysRevD.14.870

    Article  ADS  CAS  Google Scholar 

  51. DeWitt, B.: Quantum gravity: the new synthesis. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  52. Unruh, W.G., Wald, R.M.: What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047–1056 (1984) https://doi.org/10.1103/PhysRevD.29.1047

    Article  ADS  Google Scholar 

  53. Schlicht, S.: Considerations on the Unruh effect: Causality and regularization. Class. Quant. Grav. 21, 4647–4660 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  54. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004) https://doi.org/10.1103/RevModPhys.76.93

    Article  ADS  MathSciNet  Google Scholar 

  55. Jonsson, R.H., Martín-Martínez, E., Kempf, A.: Information transmission without energy exchange. Phys. Rev. Lett. 114, 110505 (2015) https://doi.org/10.1103/PhysRevLett.114.110505

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Reznik, B.: Entanglement from the vacuum. Found. Phys. 33(1), 167–176 (2003) https://doi.org/10.1023/A:1022875910744

    Article  ADS  MathSciNet  Google Scholar 

  57. Pozas-Kerstjens, A., Martín-Martínez, E.: Entanglement harvesting from the electromagnetic vacuum with hydrogenlike atoms. Phys. Rev. D 94, 064074 (2016) https://doi.org/10.1103/PhysRevD.94.064074

    Article  ADS  MathSciNet  CAS  Google Scholar 

  58. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, (1976)

  59. Beckman, D., Gottesman, D., Nielsen, M.A., Preskill, J.: Causal and localizable quantum operations. Phys. Rev. A 64, 052309 (2001) https://doi.org/10.1103/PhysRevA.64.052309

    Article  ADS  CAS  Google Scholar 

  60. Gooding, C., Biermann, S., Erne, S., Louko, J., Unruh, W.G., Schmiedmayer, J., Weinfurtner, S.: Interferometric Unruh detectors for bose-einstein condensates. Phys. Rev. Lett. 125, 213603 (2020) https://doi.org/10.1103/PhysRevLett.125.213603

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  61. Anastopoulos, C., Savvidou, N.: Quantum information in relativity: The challenge of QFT measurements. Entropy 24(1) (2022) https://doi.org/10.3390/e24010004

Download references

Acknowledgements

Thank you to Charis Anastopoulos, José de Ramón Rivera, Alex Blum, and two anonymous referees for useful feedback on drafts of this paper. This work is part of a larger project for which we are appreciative of the help that we have received from many people (see Papageorgiou and Fraser [1]). MP is grateful to Bernadette Lessel for co-organizing a pandemic reading group that motivated part of this work. DF and MP gratefully acknowledge support from a Social Sciences and Humanities Research Council of Canada Insight Grant. MP acknowledges support of the ID\(\#\) 62312 grant from the John Templeton Foundation, as part of the https://www.templeton.org/grant/thequantum-information-structure-ofspacetime-qiss-second-phase.

Author information

Authors and Affiliations

Authors

Contributions

DF and MP contributed equally to the research, writing, and revision of the paper. DF and MP approved the final manuscript.

Corresponding author

Correspondence to Doreen Fraser.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, D., Papageorgiou, M. Note on episodes in the history of modeling measurements in local spacetime regions using QFT. EPJ H 48, 14 (2023). https://doi.org/10.1140/epjh/s13129-023-00064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjh/s13129-023-00064-1

Navigation