Log in

Electrostatic interactions between charge regulated spherical macroions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study the interaction between two charge regulating spherical macroions with dielectric interior and dissociable surface groups immersed in a monovalent electrolyte solution. The charge dissociation is modelled via the Frumkin-Fowler-Guggenheim isotherm, which allows for multiple adsorption equilibrium states. The interactions are derived from the solutions of the mean-field Poisson-Boltzmann type theory with charge regulation boundary conditions. For a range of conditions we find symmetry breaking transitions from symmetric to asymmetric charge distribution exhibiting annealed charge patchiness, which results in like-charge attraction even in a univalent electrolyte—thus fundamentally modifying the nature of electrostatic interactions in charge-stabilized colloidal suspensions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R.H. French, V.A. Parsegian, R. Podgornik, R.F. Rajter, A. Jagota, J. Luo, D. Asthagiri, M.K. Chaudhury, Y.-M. Chiang, S. Granick, S. Kalinin, M. Kardar, R. Kjellander, D.C. Langreth, J. Lewis, S. Lustig, D. Wesolowski, J.S. Wettlaufer, W.-Y. Ching, M. Finnis, F. Houlihan, O.A. von Lilienfeld, C.J. van Oss, T. Zemb, Rev. Mod. Phys. 82, 1887 (2010). https://doi.org/10.1103/RevModPhys.82.1887

    Article  ADS  Google Scholar 

  2. W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, Phys. Today 53, 38 (2000). https://doi.org/10.1063/1.1325230

    Article  Google Scholar 

  3. M. Muthukumar, Physics of Charged Macromolecules (Synthetic and Biological Systems publisher Cambridge University Press, 2023)

  4. P.G. De Gennes, P. Pincus, R.M. Velasco, F. Brochard, J. Phys. France 37, 1461 (1976). https://doi.org/10.1051/jphys:0197600370120146100

    Article  Google Scholar 

  5. M.L. Henle, C.D. Santangelo, D.M. Patel, P.A. Pincus, Europhys. Lett. 66, 284 (2004). https://doi.org/10.1209/epl/i2003-10205-1

    Article  ADS  Google Scholar 

  6. A. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005). https://doi.org/10.1016/j.progpolymsci.2005.07.006

    Article  Google Scholar 

  7. G.C. Wong, Curr. Opin. Colloid Interface Sci. 11, 310 (2006). https://doi.org/10.1016/j.cocis.2006.12.003

    Article  Google Scholar 

  8. P. Pincus, Macromolecules 24, 2912 (1991). https://doi.org/10.1021/ma00010a043

    Article  ADS  Google Scholar 

  9. M.N. Tamashiro, E. Hernández-Zapata, P.A. Schorr, M. Balastre, M. Tirrell, P. Pincus, J. Chem. Phys. 115, 1960 (2001). https://doi.org/10.1063/1.1381579

    Article  ADS  Google Scholar 

  10. C. Schneider, A. Jusufi, R. Farina, F. Li, P. Pincus, M. Tirrell, M. Ballauff, Langmuir 24, 10612 (2008). https://doi.org/10.1021/la802303z

    Article  Google Scholar 

  11. H.-X. Zhou, X. Pang, Chem. Rev. 118, 1691 (2018). https://doi.org/10.1021/acs.chemrev.7b00305

    Article  Google Scholar 

  12. P. Pincus, J.-F. Joanny, D. Andelman, Europhys. Lett. 11, 763 (1990). https://doi.org/10.1209/0295-5075/11/8/012

    Article  ADS  Google Scholar 

  13. G. Cevc, in Encyclopedia of Biophysics, edited by G. C. K. Roberts and A. Watts. publisher Springer Berlin Heidelberg 2018) pp. 1446–1452

  14. N. Dan, Colloids Surf., B 27, 41 (2003). https://doi.org/10.1016/S0927-7765(02)00041-3

    Article  Google Scholar 

  15. X. Gao, S. Hong, Z. Liu, T. Yue, J. Dobnikar, X. Zhang, Nanoscale 11, 1949 (2019). https://doi.org/10.1039/C8NR10447F

    Article  Google Scholar 

  16. A.G. Cherstvy, Phys. Chem. Chem. Phys. 13, 9942 (2011). https://doi.org/10.1039/C0CP02796K

    Article  Google Scholar 

  17. A. Šiber, R. Podgornik, Phys. Rev. E 76, 061906 (2007). https://doi.org/10.1103/PhysRevE.76.061906

    Article  ADS  Google Scholar 

  18. R. Zandi, B. Dragnea, A. Travesset, R. Podgornik, Phys. Rep. 847, 1 (2020). https://doi.org/10.1016/j.physrep.2019.12.005

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Dijkstra, E. Luijten, Nat. Mater. 20, 762 (2021). https://doi.org/10.1038/s41563-021-01014-2

    Article  ADS  Google Scholar 

  20. E.J. Verwey, J.T.G. Overbeek, Theory of the stability of Lyophobic Colloids (Publisher Elsevier address Amsterdam, 1948)

  21. T. Markovich, D. Andelman, and R. Podgornik, in Handbook of Lipid Membranes, edited by C. R. Safynia and J. O. Raedler ( publisher Taylor and Francis, 2021) pp. 99–128

  22. V.A. Vasileva, D.A. Mazur, Y.A. Budkov, J. Chem. Phys. 159, 024709 (2023). https://doi.org/10.1063/5.0158247

    Article  ADS  Google Scholar 

  23. R. Blossey, The Poisson-Boltzmann Equation: An Introduction, Springer Briefs in Physics ( publisher Springer Nature, address Springer Nature Tiergartenstrasse 15 - 17 69121 Heidelberg Germany, 2023)

  24. Y.S. Jho, M. Kanduč, A. Naji, R. Podgornik, M.W. Kim, P.A. Pincus, Phys. Rev. Lett. 101, 188101 (2008). https://doi.org/10.1103/PhysRevLett.101.188101

    Article  ADS  Google Scholar 

  25. A. Naji, M. Kanduč, J. Forsman, R. Podgornik, J. Chem. Phys. 139, 150901 (2013). https://doi.org/10.1063/1.4824681

    Article  ADS  Google Scholar 

  26. H. Ohshima, Electrical Phenomena at Interfaces and Biointerfaces (Publisher John Wiley and Sons Inc, UK, 2012). https://doi.org/10.1002/9781118135440

    Book  Google Scholar 

  27. A.V. Filippov, A.F. Pal’, A.N. Starostin, A.S. Ivanov, JETP Lett. 83, 546 (2006). https://doi.org/10.1134/s0021364006120058

    Article  Google Scholar 

  28. S.V. Siryk, A. Bendandi, A. Diaspro, W. Rocchia, J. Chem. Phys. 155, 114114 (2021). https://doi.org/10.1063/5.0056120

    Article  ADS  Google Scholar 

  29. S.V. Siryk, W. Rocchia, J. Phys. Chem. B 126, 10400 (2022). https://doi.org/10.1021/acs.jpcb.2c05564

    Article  Google Scholar 

  30. D. Andelman, in Handbook of Biological Physics: Structure and Dynamics of Membranes. ed. by R. Lipowsky, E. Sackmann (Publisher Elsevier, 1995), pp.603–642

    Google Scholar 

  31. J. Dobnikar, D. Haložan, M. Brumen, H.-H. Von Grünberg, R. Rzehak, Comput. Phys. Commun. 159, 73 (2004). https://doi.org/10.1016/j.cpc.2003.10.001

    Article  ADS  Google Scholar 

  32. J. Dobnikar, Y. Chen, R. Rzehak, H. Von Grünberg, J. Chem. Phys. 119, 4971 (2003). https://doi.org/10.1063/1.1595642

    Article  ADS  Google Scholar 

  33. A.L. Kolesnikov, D.A. Mazur, Y.A. Budkov, Europhys. Lett. 140, 16001 (2022). https://doi.org/10.1209/0295-5075/ac9252

    Article  ADS  Google Scholar 

  34. M. Borkovec, B. Jönsson, and G. J. M. Koper, in Surface and Colloid Science, edited by E. Matijević (Publisher Springer, 2001) pp. 99–340

  35. A. Naydenov, P.A. Pincus, S.A. Safran, Langmuir 23, 12016 (2007). https://doi.org/10.1021/la702085x

    Article  Google Scholar 

  36. R. Brewster, P.A. Pincus, S.A. Safran, Phys. Rev. Lett. 101, 128101 (2008). https://doi.org/10.1103/PhysRevLett.101.128101

    Article  ADS  Google Scholar 

  37. G.M. Ong, A. Gallegos, J. Wu, Langmuir 36, 11918 (2020). https://doi.org/10.1021/acs.langmuir.0c02000

    Article  Google Scholar 

  38. A. Gallegos, J. Wu, J. Chem. Eng. Data 65, 5630 (2020). https://doi.org/10.1021/acs.jced.0c00625

    Article  Google Scholar 

  39. P. Khunpetch, A. Majee, R. Podgornik, Soft Matter 18, 2597 (2022). https://doi.org/10.1039/D1SM01665B

    Article  ADS  Google Scholar 

  40. P. Khunpetch, A. Majee, H. Ruixuan, R. Podgornik, Phys. Rev. E 108, 024402 (2023). https://doi.org/10.1103/PhysRevE.108.024402

    Article  ADS  Google Scholar 

  41. I. Popa, P. Sinha, M. Finessi, P. Maroni, G. Papastavrou, M. Borkovec, Phys. Rev. Lett. 104, 228301 (2010). https://doi.org/10.1103/PhysRevLett.104.228301

    Article  ADS  Google Scholar 

  42. M. Lund, B. Jönsson, Q. Rev, Biophys. 46, 265 (2013). https://doi.org/10.1017/S003358351300005X

    Article  Google Scholar 

  43. G. Trefalt, S.H. Behrens, M. Borkovec, Langmuir 32, 380 (2016). https://doi.org/10.1021/acs.langmuir.5b03611

    Article  Google Scholar 

  44. G. Trefalt, T. Palberg, M. Borkovec, Curr. Opin. Colloid Interface Sci. 27, 9 (2017). https://doi.org/10.1016/j.cocis.2016.09.008

    Article  Google Scholar 

  45. Y. Avni, D. Andelman, R. Podgornik, Curr. Opin. Electrochem. 13, 70 (2019). https://doi.org/10.1016/j.coelec.2018.10.014

    Article  Google Scholar 

  46. A. Kubincová, P.H. Hünenberger, M. Krishnan, J. Chem. Phys. 152, 104713 (2020). https://doi.org/10.1063/1.5141346

    Article  ADS  Google Scholar 

  47. N. Adžić, R. Podgornik, Eur. Phys. J. E 37, 49 (2014). https://doi.org/10.1140/epje/i2014-14049-6

    Article  Google Scholar 

  48. N. Adžić, R. Podgornik, Phys. Rev. E 91, 022715 (2015). https://doi.org/10.1103/PhysRevE.91.022715

    Article  ADS  Google Scholar 

  49. N. Adžić, R. Podgornik, J. Chem. Phys. 144, 214901 (2016). https://doi.org/10.1063/1.4952980

    Article  ADS  Google Scholar 

  50. S.H. Behrens, M. Borkovec, J. Phys. Chem. B 103, 2918 (1999). https://doi.org/10.1021/jp984099w

    Article  Google Scholar 

  51. P.M. Biesheuvel, J. Colloid Interface Sci. 275, 514 (2004). https://doi.org/10.1016/j.jcis.2004.02.069

    Article  ADS  Google Scholar 

  52. M. Borkovec, S.H. Behrens, J. Phys. Chem. B 112, 10796 (2008). https://doi.org/10.1021/jp805595z

    Article  Google Scholar 

  53. T. Obstbaum, U. Sivan, Langmuir 38, 8477 (2022). https://doi.org/10.1021/acs.langmuir.2c01352

    Article  Google Scholar 

  54. D. Chan, T.W. Healy, L.R. White, J. Chem. Soc., Faraday Trans. 72, 2844 (1976). https://doi.org/10.1039/F19767202844

    Article  Google Scholar 

  55. D. McCormack, S.L. Carnie, D.Y.C. Chan, J. Colloid Interface Sci. 169, 177 (1995). https://doi.org/10.1006/jcis.1995.1019

    Article  ADS  Google Scholar 

  56. S.H. Behrens, M. Borkovec, Phys. Rev. E 60, 7040 (1999). https://doi.org/10.1103/PhysRevE.60.7040

    Article  ADS  Google Scholar 

  57. D.Y.C. Chan, T.W. Healy, T. Supasiti, S. Usui, J. Colloid Interface Sci. 296, 150 (2006). https://doi.org/10.1016/j.jcis.2005.09.003

    Article  ADS  Google Scholar 

  58. N. Boon, R. van Roij, J. Chem. Phys. 134, 054706 (2011). https://doi.org/10.1063/1.3533279

    Article  ADS  Google Scholar 

  59. M. Krishnan, J. Chem. Phys. 146, 205101 (2017). https://doi.org/10.1063/1.4983485

    Article  ADS  Google Scholar 

  60. A. Behjatian, R. Walker-Gibbons, A.A. Schekochihin, M. Krishnan, Langmuir 38, 786 (2022). https://doi.org/10.1021/acs.langmuir.1c02801

    Article  Google Scholar 

  61. E. Reiner, C. Radke, Adv. Colloid Interface Sci. 47, 59 (1993). https://doi.org/10.1016/0001-8686(93)80014-3

    Article  Google Scholar 

  62. R. Ettelaie, R. Buscall, Adv. Colloid Interface Sci. 61, 131 (1995). https://doi.org/10.1016/0001-8686(95)00263-P

    Article  Google Scholar 

  63. F.R. Zypman, Langmuir 38, 3561 (2022). https://doi.org/10.1021/acs.langmuir.2c00141

    Article  Google Scholar 

  64. J.E. Sader, D.Y.C. Chan, J. Colloid Interface Sci. 213, 268 (1999). https://doi.org/10.1006/jcis.1999.6131

    Article  ADS  Google Scholar 

  65. J.C. Neu, Phys. Rev. Lett. 82, 1072 (1999). https://doi.org/10.1103/PhysRevLett.82.1072

    Article  ADS  Google Scholar 

  66. E. Trizac, J.-L. Raimbault, Phys. Rev. E 60, 6530 (1999). https://doi.org/10.1103/PhysRevE.60.6530

    Article  ADS  Google Scholar 

  67. A. Majee, M. Bier, R. Podgornik, Soft Matter 14, 985 (2018). https://doi.org/10.1039/c7sm02270k

    Article  ADS  Google Scholar 

  68. A. Majee, M. Bier, R. Blossey, R. Podgornik, Phys. Rev. E 100, 050601 (2019). https://doi.org/10.1103/PhysRevE.100.050601

    Article  ADS  Google Scholar 

  69. A. Majee, M. Bier, R. Blossey, R. Podgornik, Phys. Rev. Research 2, 043417 (2020). https://doi.org/10.1103/PhysRevResearch.2.043417

    Article  ADS  Google Scholar 

  70. D. Harries, R. Podgornik, V.A. Parsegian, E. Mar-Or, D. Andelman, J. Chem. Phys. 124, 224702 (2006). https://doi.org/10.1063/1.2198534

    Article  ADS  Google Scholar 

  71. J. Yuan, K. Takae, H. Tanaka, Phys. Rev. Lett. 128, 158001 (2022). https://doi.org/10.1103/PhysRevLett.128.158001

    Article  ADS  Google Scholar 

  72. M.M. Baksh, M. Jaros, J.T. Groves, Nature 427, 139 (2004). https://doi.org/10.1038/nature02209

    Article  ADS  Google Scholar 

  73. E.W. Gomez, N.G. Clack, H.-J. Wu, J.T. Groves, Soft Matter 5, 1931 (2009). https://doi.org/10.1039/B821510C

    Article  ADS  Google Scholar 

  74. L. Javidpour, A. Božič, A. Naji, R. Podgornik, Soft Matter 17, 4296 (2021). https://doi.org/10.1039/d1sm00232e

    Article  ADS  Google Scholar 

  75. A.V. Finkelstein, Protein Physics (Second Edition ( publisher Elsevier, 2016). https://doi.org/10.13140/RG.2.1.1319.8320

  76. R.A. Marcus, J. Chem. Phys. 23, 1057 (1955). https://doi.org/10.1063/1.1742191

    Article  ADS  Google Scholar 

  77. R. Podgornik, J. Chem. Phys. 149, 104701 (2018). https://doi.org/10.1063/1.5045237

    Article  ADS  Google Scholar 

  78. L. Koopal, W. Tan, M. Avena, Adv. Colloid Interface Sci. 280, 102138 (2020). https://doi.org/10.1016/j.cis.2020.102138

    Article  Google Scholar 

  79. A. Abin-Bazaine, A. C. Trujillo, and M. Olmos-Marquez, in Wastewater Treatment, edited by M. Ince and O. K. Ince ( publisher IntechOpen, address Rijeka, 2022) Chap. chapter 2 https://doi.org/10.5772/intechopen.104260

  80. I. Teraoka, Polymer solutions: An Introduction to Physical Properties (Publisher John Wiley and Sons Inc, address New York, 2002)

    Book  Google Scholar 

  81. Y. Avni, R. Podgornik, D. Andelman, J. Chem. Phys. 153, 024901 (2020). https://doi.org/10.1063/5.0011623

    Article  Google Scholar 

  82. Y. Avni, T. Markovich, R. Podgornik, D. Andelman, Soft Matter 14, 6058 (2018). https://doi.org/10.1039/c8sm00728d

    Article  ADS  Google Scholar 

  83. B.W. Ninham, V.A. Parsegian, J. Theor. Biol. 31, 405 (1971). https://doi.org/10.1016/0022-5193(71)90019-1

    Article  ADS  Google Scholar 

  84. J. Landsgesell, L. Nová, O. Rud, F. Uhlík, D. Sean, P. Hebbeker, C. Holm, P. Košovan, Soft Matter 15, 1155 (2019). https://doi.org/10.1039/C8SM02085J

    Article  ADS  Google Scholar 

  85. J. Landsgesell, P. Hebbeker, O. Rud, R. Lunkad, P. Košovan, C. Holm, Macromolecules 53, 3007 (2020). https://doi.org/10.1021/acs.macromol.0c00260

    Article  ADS  Google Scholar 

  86. A. Bakhshandeh, D. Frydel, Y. Levin, Phys. Chem. Chem. Phys. 22, 24712 (2020). https://doi.org/10.1039/D0CP03633A

    Article  Google Scholar 

  87. A. Bakhshandeh, D. Frydel, Y. Levin, Langmuir 38, 13963 (2022). https://doi.org/10.1021/acs.langmuir.2c02313

    Article  Google Scholar 

  88. L. Fink, J. Feitelson, R. Noff, T. Dvir, C. Tamburu, U. Raviv, Langmuir 33(23), 5636 (2017). https://doi.org/10.1021/acs.langmuir.7b00596

    Article  Google Scholar 

  89. L. Fink, A. Steiner, O. Szekely, P. Szekely, U. Raviv, Langmuir 35, 9694 (2019). https://doi.org/10.1021/acs.langmuir.9b00778

    Article  Google Scholar 

  90. J. Schwinger, L. L. Deraad, K. A. Milton, W.-Y. Tsai, and J. Norton, Classical Electrodynamics, Frontiers in Physics ( publisher Westview Press, address Philadelphia, PA, 1998)

  91. A.C. Maggs, R. Podgornik, Soft Matter 12, 1219 (2016). https://doi.org/10.1039/c5sm01757b

    Article  ADS  Google Scholar 

  92. J.T.G. Overbeek, Colloids and Surfaces 51, 61 (1990). https://doi.org/10.1016/0166-6622(90)80132-n

    Article  Google Scholar 

  93. G. Lamm, title The poisson–boltzmann equation, in Reviews in Computational Chemistry ( publisher John Wiley and Sons, Ltd, 2003) Chap. chapter 4, pp. 147–365 https://doi.org/10.1002/0471466638.ch4

  94. A. Majee, M. Bier, S. Dietrich, J. Chem. Phys. 145, 064707 (2016). https://doi.org/10.1063/1.4960623

    Article  ADS  Google Scholar 

  95. R. Bebon, A. Majee, J. Chem. Phys. 153, 044903 (2020). https://doi.org/10.1063/5.0013298

    Article  ADS  Google Scholar 

  96. J. Landsgesell, P. Hebbeker, O. Rud, R. Lunkad, P. Košovan, C. Holm, Macromolecules 53, 3007 (2020). https://doi.org/10.1021/acs.macromol.0c00260

    Article  ADS  Google Scholar 

  97. E. J. Verwey and J. T. G. Overbeek, Theory of the stability of Lyophobic Colloids ( publisher Elsevier, address Amsterdam, 1948)

  98. Y.A. Budkov, A.L. Kolesnikov, J. Stat. Mech: Theory Exp. 2022, 053205 (2022). https://doi.org/10.1088/1742-5468/ac6a5b

    Article  Google Scholar 

  99. P.E. Brandyshev, Y.A. Budkov, J. Chem. Phys. 158, 174114 (2023). https://doi.org/10.1063/5.0148466

    Article  ADS  Google Scholar 

  100. R. Podgornik, Chem. Phys. Lett. 163, 531 (1989). https://doi.org/10.1016/0009-2614(89)85181-4

    Article  ADS  Google Scholar 

  101. A.A. Kornyshev, D.A. Kossakowski, S. Leikin, J. Chem. Phys. 97, 6809 (1992). https://doi.org/10.1063/1.463634

    Article  ADS  Google Scholar 

  102. J. Wu, Chem. Rev. 122, 10821 (2022). https://doi.org/10.1021/acs.chemrev.2c00097

    Article  Google Scholar 

  103. Y.A. Budkov, A.L. Kolesnikov, Curr. Opin. Electrochem. 33, 100931 (2022). https://doi.org/10.1016/j.coelec.2021.100931

    Article  Google Scholar 

  104. J. Huang, JACS Au 3, 550 (2023). https://doi.org/10.1021/jacsau.2c00650

    Article  Google Scholar 

  105. R. Kjellander, Phys. Chem. Chem. Phys. 22, 23952 (2020). https://doi.org/10.1039/D0CP02742A

    Article  Google Scholar 

  106. R. Zhang, B.I. Shklovskii, Phys. Rev. E 72, 021405 (2005). https://doi.org/10.1103/PhysRevE.72.021405

    Article  ADS  Google Scholar 

  107. J. Lekner, Proc. R. Soc. A 468, 2829 (2012). https://doi.org/10.1098/rspa.2012.0133

    Article  ADS  MathSciNet  Google Scholar 

  108. L. Zhang, H. Davis, A. Kornyshev, D. Kroll, Chem. Phys. Lett. 229, 638 (1994). https://doi.org/10.1016/0009-2614(94)01099-4

    Article  ADS  Google Scholar 

  109. M. Krishnan, I. Mönch, P. Schwille, Nano Lett. 7, 1270 (2007). https://doi.org/10.1021/nl0701861

    Article  ADS  Google Scholar 

  110. A. Klaassen, F. Liu, F. Mugele, I. Siretanu, Langmuir 38, 914 (2022). https://doi.org/10.1021/acs.langmuir.1c02077

    Article  Google Scholar 

  111. F.L. Barroso da Silva, B. Jönsson, Soft Matter 5, 2862 (2009). https://doi.org/10.1039/B902039J

    Article  ADS  Google Scholar 

  112. F. L. Barroso da Silva, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, ( publisher Elsevier, 2023)

  113. B.K. Radak, C. Chipot, D. Suh, S. Jo, W. Jiang, J.C. Phillips, K. Schulten, B. Roux, J. Chem. Theory Comput. 13, 5933 (2017). https://doi.org/10.1021/acs.jctc.7b00875

    Article  Google Scholar 

  114. T. Curk, J. Yuan, E. Luijten, J. Chem. Phys. 156, 044122 (2022). https://doi.org/10.1063/5.0066432

    Article  ADS  Google Scholar 

  115. N. Aho, P. Buslaev, A. Jansen, P. Bauer, G. Groenhof, B. Hess, J. Chem. Theory Comput. 18, 6148 (2022). https://doi.org/10.1021/acs.jctc.2c00516

    Article  Google Scholar 

  116. V. Martins de Oliveira, R. Liu, J. Shen, Curr. Opin. Struct. Biol. 77, 102498 (2022). https://doi.org/10.1016/j.sbi.2022.102498

    Article  Google Scholar 

  117. P. Buslaev, N. Aho, A. Jansen, P. Bauer, B. Hess, G. Groenhof, J. Chem. Theory Comput. 18, 6134 (2022). https://doi.org/10.1021/acs.jctc.2c00517

    Article  Google Scholar 

  118. A. Bakhshandeh, A.P. dos Santos, Y. Levin, J. Phys. Chem. B 124, 11762 (2020). https://doi.org/10.1021/acs.jpcb.0c09446

    Article  Google Scholar 

Download references

Acknowledgements

HR and RP acknowledge funding from the Key Project No. 12034019 of the National Natural Science Foundation of China and the 1000-Talents Program of the Chinese Foreign Experts Bureau and the School of Physics, University of Chinese Academy of Sciences. J.D. acknowledges funding from the Chinese National Science Foundation (Grants 11874398, 12034019) and from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB33000000).

Author information

Authors and Affiliations

Authors

Contributions

RP and JD formulated the problem. RH did the calculations. AM did the analysis of the results. All the authors contributed equally to the writing of the paper.

Corresponding author

Correspondence to Rudolf Podgornik.

Additional information

Dedicated to the legacy of fundamental contributions of Fyl Pincus to macromolecular electrostatics that have enlightened our understanding of complex (bio)molecular systems and have inspired and continue to inspire the soft-matter community.

Appendices

Appendix A: Alternative forms of the free energy

In this appendix we derive alternative forms of the free energy that do not contain the derivatives of the electrostatic potential.

Inserting the Euler-Lagrange equations back into the free energy Eq. (7) we obtain the equilibrium free energy as

$$\begin{aligned} {{{\mathcal {E}}}} [\psi (\textbf{r}), \phi (\textbf{r})]= & {} \frac{k_BT~\kappa _D^2}{4 \pi \ell _B} \!\int _{V}\!\!\!d^3\textbf{r}\Big ( \frac{1}{2}\beta e_0 \psi \sinh {\beta e_0 \psi } - \cosh {\beta e_0 \psi }\Big ) \nonumber \\{} & {} {+} \sum _{i=1,2}\oint _{S_i}\!\!\!d^2\textbf{r}\left( {-}\frac{1}{2} \psi \frac{\partial f_{CR}(\psi , \phi )}{\partial \psi } {+} f_{CR}(\psi , \phi )\right) .~~~ \nonumber \\ \end{aligned}$$
(A1)

This can be rewritten in a fully symmetric form that as far as we know has not yet been derived in the PB literature. In fact, introducing

$$\begin{aligned} f_{PB}(\psi ) = - \frac{k_BT~\kappa _D^2}{4 \pi \ell _B} \cosh {\beta e_0 \psi (\textbf{r})} \end{aligned}$$
(A2)

which is proportional to the (negative) osmotic pressure of the mobile ions, we obtain

$$\begin{aligned} {{{\mathcal {F}}}} [\psi (\textbf{r})]= & {} \int _{V} d^3\textbf{r}\Big (-\frac{1}{2} \psi \frac{\partial f_{PB}(\psi )}{\partial \psi } + f_{PB}(\psi ) \Big ) \nonumber \\{} & {} + \sum _{i=1,2}\oint _{S_i} d^2\textbf{r}~ \left( -\frac{1}{2} \psi \frac{\partial f_{CR}(\psi , \phi )}{\partial \psi } + f_{CR}(\psi , \phi )\right) .\nonumber \\ \end{aligned}$$
(A3)

This form of the free energy is particularly apt for numerical calculations since it contains only the electrostatic potential and the surface charge fraction, but does not contain any derivatives of these fields. We can rework this form of the free energy further by inserting the result of Eqs. (12) that yields

$$\begin{aligned}{} & {} f_{CR}(\psi , \phi ) = \nonumber \\{} & {} \quad = n_0 k_BT \Big ( - \frac{1}{2}\beta e \psi + \frac{1}{2}\chi \phi ^2 - \ln {\left( 1 + e^{- \beta e \psi + \chi \phi + \alpha }\right) }\Big ), ~\nonumber \\ \end{aligned}$$
(A4)

a form valid at each of the macroion surfaces 1, 2. From here it also follows that

Fig. 8
figure 8

a Plot of the charge asymmetry \(\vert \phi _{1}-\phi _2\vert \) for \(A = \kappa _D \ell _B/(4\pi )\frac{e^{-\kappa _D D}}{\kappa _D D } = 3\) as a function of \(\alpha \) and \(\chi \) for two point macroions. The case \(\vert \phi _{1}-\phi _2\vert = 0\), corresponds to a symmetric branch of the solution, while the charge symmetry broken state corresponds to \(\vert \phi _{1}-\phi _2\vert \ne 0\). The line represents the critical dissociation “isotherm” \(\alpha = -{\textstyle \frac{1}{2}}\chi \). b Plot of the force \(-\partial _D{{{\mathcal {F}}}}(D)\) in the units of \(\kappa _D^2 \ell _B/(4\pi )\) as a function of \(u = \kappa _D D\). \(\alpha = -2\) and \(\chi = 10, 7, 6, 5, 4\) (top to bottom curves). The charge symmetry transitions between the symmetric and asymmetric branches of the solution are now translated into a discontinuous jump in the interaction force from repulsion to attraction. Note that this discontinuity moves to larger spacing as \(\chi \) decreases

$$\begin{aligned}{} & {} -\frac{1}{2} \psi _i \frac{\partial f_{CR}(\psi , \phi )}{\partial \psi } = -\frac{1}{2} \psi \sigma \nonumber \\{} & {} \quad = -\frac{1}{2} e n_0~\psi \left( \phi - \frac{1}{2}\right) \nonumber \\ \end{aligned}$$
(A5)

valid at each of the macroion surfaces 1, 2 and therefore combining the two together we remain with

$$\begin{aligned}{} & {} -\frac{1}{2} \psi \frac{\partial f_{CR}(\psi , \phi )}{\partial \psi } + f_{CR}(\psi , \phi ) \nonumber \\{} & {} \quad = n_0\left( - \frac{1}{2}\beta e \psi + \frac{1}{2}\chi \phi ^2 - \ln {\left( 1 + e^{- \beta e \psi + \chi \phi + \alpha }\right) }\right. \nonumber \\{} & {} \quad \left. -\frac{1}{2} \beta e\psi \left( \phi - \frac{1}{2}\right) \right) . \end{aligned}$$
(A6)

again valid at each of the macroion surfaces 1, 2. Inserting this into Eq. (A1) we finally obtain the form of the free energy most suitable for numerical calculations

$$\begin{aligned} {{{\mathcal {E}}}} [\psi (\textbf{r}), \phi (\textbf{r})] =&\frac{k_BT~\kappa _D^2}{4 \pi \ell _B} \int _{V} d^3\textbf{r}\Big ( \frac{1}{2}~\beta e_0 \psi (\textbf{r}) ~\sinh {\beta e_0 \psi (\textbf{r}) } \nonumber \\&- \cosh {\beta e_0 \psi (\textbf{r}) }\Big ) \nonumber \\&+ n_0 k_BT \sum _{i=1,2}\oint _{S_i} d^2\textbf{r} \Big ( - \frac{1}{4}\beta e \psi + \frac{1}{2}\chi \phi ^2 \nonumber \\&- \ln {\left( 1 + e^{- \beta e \psi + \chi \phi + \alpha }\right) } -\frac{1}{2} \beta e\psi \phi \Big ). \nonumber \\ \end{aligned}$$
(A7)

This is a rather simple free energy expression that can be straightforwardly used in numerical calculations specifically in the context of charge regulation. It remains valid with or without the \(\chi \) term, and therefore also in the case of the Langmuir dissociation isotherm for \(\chi = 0\). Again, we note that since this free energy contains no derivatives, it is a practical formulation for numerical computation.

Note that in the absence of CR—for constant values of the surface charge densities \(\sigma _{1,2}\)—the above free energy reduces to the form equivalent to the one derived by Overbeek [59, 92]

$$\begin{aligned} {{{\mathcal {E}}}} [\psi (\textbf{r}), \phi (\textbf{r})]= & {} \frac{k_BT~\kappa _D^2}{4 \pi \ell _B} \int _{V} d^3\textbf{r}\Big ( \frac{1}{2}\beta e_0 \psi (\textbf{r}) ~\sinh {\beta e_0 \psi (\textbf{r}) } \nonumber \\{} & {} - \cosh {\beta e_0 \psi (\textbf{r}) }\Big ) + \frac{1}{2} \sum _{i=1,2}\oint _{S_i} d^2\textbf{r}~ \sigma _i \phi _i. \nonumber \\ \end{aligned}$$
(A8)

Appendix B: Point charge limit

We proceed by casting the electrostatic part of the free energy of the two macroions in the limit of point charges into a much simplified form that can be derived from the Casimir charging process

$$\begin{aligned}{} & {} \lim _{\left( \oint _{S_1} \!\!\!d^2\textbf{r} \longrightarrow 4\pi a^2\right) }\!\!\!\!\!\!\!\!\!\!{{{\mathcal {F}}}}_{ES}[e_1, e_2] = \int _0^{e_1} \!\!\!\!\!\psi (e_1) de_1 + \int _0^{e_2} \!\!\!\!\!\psi (e_2) de_2,\nonumber \\ \end{aligned}$$
(B1)

where the limit indicates the point-like macroion approximation, with \(e = e_0 ~(\phi -{\textstyle \frac{1}{2}})\), and the electrostatic potential is given by the DH expression for two point charges separated by D, yielding finally the electrostatic free energy in the form

$$\begin{aligned} {{{\mathcal {F}}}}_{ES} [\psi (\textbf{r})]\simeq & {} \frac{e_0^2(\phi _1-{\textstyle \frac{1}{2}})^2}{4\pi \varepsilon _0\varepsilon _w a} + \frac{e_0^2(\phi _2-{\textstyle \frac{1}{2}})^2}{4\pi \varepsilon _0\varepsilon _w a} \nonumber \\ {}{} & {} \quad + \frac{e_0^2(\phi _1-{\textstyle \frac{1}{2}})(\phi _2-{\textstyle \frac{1}{2}})}{4\pi \varepsilon _0\varepsilon _w} \frac{e^{-\kappa _D D}}{D}. \end{aligned}$$
(B2)

Clearly, the terms linear in \(\phi _{1,2}\) simply renormalize \(\alpha \) and the terms quadratic in \(\phi _{1,2}\) renormalize \(\chi \) in the expression for the total free energy, Eq. (15),

$$\begin{aligned}{} & {} \alpha _{1,2} \longrightarrow {{\tilde{\alpha }}}_{1,2} = \alpha _{1,2} - \frac{e_0^2}{8\pi \varepsilon _0\varepsilon _w a} - \frac{e_0^2 }{4\pi \varepsilon _0\varepsilon _w} \frac{e^{-\kappa _D D}}{D} \nonumber \\{} & {} \chi _{1,2} \longrightarrow {{\tilde{\chi }}}_{1,2} = \chi _{1,2} + \frac{e_0^2}{8\pi \varepsilon _0\varepsilon _w a}\,, \end{aligned}$$
(B3)

A renormalized and rescaled free energy is then of the form

$$\begin{aligned}{} & {} {{{\mathcal {F}}}} [\phi _1, \phi _2] \simeq \frac{\kappa _D \ell _B}{4\pi } \frac{e^{-\kappa _D D}}{\kappa _D D }\left( \phi _1-\frac{1}{2}\right) \left( \phi _2-\frac{1}{2}\right) - \nonumber \\{} & {} \quad - {{\tilde{\alpha }}}_1 \phi _1 - \frac{1}{2} {{\tilde{\chi }}}_1 \phi _1^2 + \phi _1\ln \phi _1+(1-\phi _1)\ln (1-\phi _1)+ \nonumber \\{} & {} \quad - {{\tilde{\alpha }}}_2 \phi _2 - \frac{1}{2} {{\tilde{\chi }}}_2 \phi _2^2 + \phi _2\ln \phi _2+(1-\phi _2)\ln (1-\phi _2), \nonumber \\ \end{aligned}$$
(B4)

where \(\ell _{B}\) is again the Bjerrum length. One should note the difference between the above free energy and the Langmuir isotherm model used in Adžić et al. [47,48,49]. The equilibrium state is obtained numerically—by minimizing \({{{\mathcal {F}}}} [\phi _1, \phi _2]\) with respect to \(\phi _{1,2}\):

$$\begin{aligned} \frac{\partial {{{\mathcal {F}}}} [\phi _1, \phi _2]}{\partial \phi _{1,2}(D)} = 0. \end{aligned}$$
(B5)

The equilibrium free energy exhibits a separation dependence \({{{\mathcal {F}}}} [\phi _1(D), \phi _2(D)] \longrightarrow {{{\mathcal {F}}}}(D)\), and the interaction force is \(f=- \partial _D {{{\mathcal {F}}}}(D)\).

The dependence of free energy on the (dimensionless) separation \(\kappa _D D\) is shown in Fig. 8. Figure 8a displays the charge asymmetry proportional to \(\vert \phi _{1}-\phi _2\vert \) as a function of \((\alpha ,\chi )\) at fixed D. In fact the case \(\vert \phi _{1}-\phi _2\vert = 0\), corresponds to a symmetric branch of the solution, while the \(\vert \phi _{1}-\phi _2\vert \ne 0\) corresponds to charge symmetry broken state. The line in Fig. 8a represents the critical dissociation “isotherm” \(\alpha = -{\textstyle \frac{1}{2}}\chi \). Clearly, there is an island of asymmetry in the see of symmetric charge partitioning. The boundary of this island of asymmetry exhibits either a continuous or discontinuous transition from the symmetric to an asymmetric state, which is reflected in the behavior of \({{{\mathcal {F}}}}(D)\) in Fig. 8b that shows the interaction force dependence on \(\kappa _D D\) for fixed \((\alpha ,\chi )\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruixuan, H., Majee, A., Dobnikar, J. et al. Electrostatic interactions between charge regulated spherical macroions. Eur. Phys. J. E 46, 115 (2023). https://doi.org/10.1140/epje/s10189-023-00373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00373-9

Navigation