Log in

Measures of azimuthal anisotropy in high-energy collisions

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Azimuthal anisotropy is a key observation made in ultrarelativistic heavy-ion collisions. This phenomenon has played a crucial role in the development of the field over the last two decades. In addition to its interest for studying the quark-gluon plasma, which was the original motivation, it is sensitive to the properties of incoming nuclei, in particular to the nuclear deformation and to the nuclear skin. The azimuthal anisotropy is therefore of crucial importance when relating low-energy nuclear structure to high-energy nuclear collisions. This article is an elementary introduction to the various observables used in order to characterize azimuthal anisotropy, which go under the names of \(v_2\{2\}\), \(v_3\{2\}\), \(v_2\{4\}\), etc. The intended audience is primarily physicists working in the field of nuclear structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing not applicable to this article as no data sets were generated or analysed during the current study.]

Notes

  1. This comment applies to the spatial image of the nucleus. As we shall discuss in the next paragraph, however, nucleons are made of partons, and the longitudinal extension of their wavefunction can be significantly larger.

  2. The motivation for building ion colliders (RHIC, then LHC), with two beams accelerated in opposite directions, is that \(\sqrt{s_{NN}}\) is much larger than in a fixed-target experiment, by a factor \(\sqrt{2\gamma }\) in the limit \(\gamma \gg 1\). In fixed-target experiments at the LHC, \(\sqrt{s_{NN}}\) is reduced by a factor \(\sim 75\) relative to the collider mode [2].

  3. This prescription was initially inspired by descriptions using high-energy QCD to model the collision [4,5,6,7,8].

  4. ALICE evaluates the average number of charged particles for collisions in the 0–5% centrality window. One must in addition take into account that \(\sim \frac{1}{3}\) of the produced particles are neutral, and that the average multiplicity in \(b=0\) collisions is \(\sim 11\%\) larger than in the considered centrality window, which consists roughly of collisions with \(b<3.5\) fm [15].

  5. Multiplicity fluctuations at fixed b are partly due to statistical (Poisson) fluctuations, which result in a standard deviation of \(\sqrt{N}\) if the average multiplicity is N. Relative statistical fluctuations are reduced if the detector acceptance is larger, so that it sees more particles. Statistical fluctuations dominate at lower energies, but they contribute by less than \(20\%\) to the variance at the LHC [22], so that upgrading detectors should not significantly improve the centrality resolution.

  6. In a grossly simplified picture, the system expands first longitudinally, then in the transverse directions. In this picture, \(T_{\textrm{eff}}\) corresponds to the temperature after the longitudinal expansion, and before the transverse expansion.

  7. This description was later refined by taking viscosity into account [34]. Note also that back in 2000, the pressure of QCD was largely unknown. It has since then been accurately computed as a function of temperature [35], and all modern fluid-dynamical calculations use this equation of state as input [36].

  8. The sign of \(v_2\) was actually not measured in this first analysis, as will be explained below.

  9. Equivalent information is obtained in calorimeters or scintillators, which record an amplitude as a function of azimuthal angle \(\phi \).

  10. In practice, some of the pairs are excluded, as will be explained in detail in Sect. 3.

  11. I borrow some of the following words from the introduction of the PhD thesis of Burak Alver [56] who, together with his supervisor Gunther Roland, gets the credit for the modern picture of azimuthal anisotropy.

  12. The data shown in Fig. 7 correspond to specific cuts on the transverse momenta of the particles (\(3<p_t<3.5\) GeV/c for one particle and \(1<p_t<1.5\) GeV/c for the other). The vast majority of particles are pions with mass energy \(mc^2\simeq 0.14\) GeV. Momenta are much larger than mc, which implies that velocities are very close to c.

  13. As argued by Anderson [61], emergent phenomena are usually associated with broken symmetries. In the case of Fig. 7, we will see that the origin of the observed pattern lies in the breaking of azimuthal symmetry in every event.

  14. This term was coined by Joern Putschke at the Quark Matter 2006 conference [62] because the structure, with a long ridge surrounding a small peak, reminded him of the Weisshorn peak in the Alps, which is climbed via ridges [63].

  15. The notation \(v_n\) for Fourier coefficients was introduced in the context of the old flow picture by Voloshin and Zhang [37].

  16. In writing this equation, I have assumed for simplicity that the single-particle distribution (4) is the same for both particles in the pair. It is not the case for the CMS analysis in Fig. 7 since the two particles are chosen in separate \(p_t\) intervals, but this is a detail which does not alter the general picture.

  17. The angle between the particles is \(\left( \varDelta \phi ^2+\varDelta \eta ^2\right) ^{1/2}\) when \(\varDelta \phi \) and \(\varDelta \eta \) are both much smaller than unity.

  18. We have pointed out that CMS results in Fig. 7 are compatible with a \(v_3\) close to \(\frac{2}{3}v_2\). This is compatible with the findings of ALICE and ATLAS, if one averages them over the \(0-5\%\) centrality range used by CMS.

  19. The viscous suppression is roughly twice larger for \(v_3\) than for \(v_2\) [39].

  20. The Au + Au results are equivalent to those shown in Fig. 4, but they are of much better quality, as many more data were available, and the analysis methods had also been refined. The larger values of \(v_2\) are due to a combination of three factors: 1. The more recent analysis exludes particles with \(0.1<p_t<0.2\) GeV/c. Particles in this range have \(v_2\approx 0\), therefore, one increases the average \(v_2\) by excluding them. 2.The older analysis uses the event-plane method, which yields results slightly smaller than \(v_2\{2\}\) in the presence of flow fluctuations [53]. 3. The recent analysis is done at a slightly higher collision energy.

  21. Therefore, the events with the highest multiplicities can have any value of \(\theta \). The ellipticity \(\varepsilon _2\) is minimal for a tip–tip collision and maximal for a body–body collision, in which the deformation of the \(^{238}\)U nucleus shows up. The net effect, after averaging over \(\theta \), is that this deformation increases \(\varepsilon _2\).

  22. One generally expects that \(v_2\) is larger in central collisions if nuclei are smaller, due to larger fluctuations, as was observed in Cu + Cu collisions at RHIC (Sect. 3.1). The statement here is a quantitative one, that the observed increase of \(v_2\) in Xe+Xe collisions relative to Pb+Pb is larger than one would expect just from the different nuclear size.

References

  1. W. Busza, K. Rajagopal, W. van der Schee, Ann. Rev. Nucl. Part. Sci. 68, 339–376 (2018). https://doi.org/10.1146/annurev-nucl-101917-020852

    Article  ADS  Google Scholar 

  2. C. Hadjidakis, D. Kikoła, J.P. Lansberg, L. Massacrier, M.G. Echevarria, A. Kusina, I. Schienbein, J. Seixas, H.S. Shao, A. Signori et al., Phys. Rept. 911, 1–83 (2021). https://doi.org/10.1016/j.physrep.2021.01.002

    Article  ADS  Google Scholar 

  3. J.D. Bjorken, Phys. Rev. 179, 1547–1553 (1969). https://doi.org/10.1103/PhysRev.179.1547

    Article  ADS  Google Scholar 

  4. K. Kajantie, P.V. Landshoff, J. Lindfors, Phys. Rev. Lett. 59, 2527 (1987). https://doi.org/10.1103/PhysRevLett.59.2527

    Article  ADS  Google Scholar 

  5. A. Krasnitz, R. Venugopalan, Nucl. Phys. B 557, 237 (1999). https://doi.org/10.1016/S0550-3213(99)00366-1

    Article  ADS  Google Scholar 

  6. K.J. Eskola, K. Kajantie, P.V. Ruuskanen, K. Tuominen, Nucl. Phys. B 570, 379–389 (2000). https://doi.org/10.1016/S0550-3213(99)00720-8

    Article  ADS  Google Scholar 

  7. K.J. Eskola, P.V. Ruuskanen, S.S. Rasanen, K. Tuominen, Nucl. Phys. A 696, 715–728 (2001). https://doi.org/10.1016/S0375-9474(01)01207-6

    Article  ADS  Google Scholar 

  8. B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012). https://doi.org/10.1103/PhysRevLett.108.252301

    Article  ADS  Google Scholar 

  9. J.S. Moreland, J.E. Bernhard, S.A. Bass, Phys. Rev. C 92(1), 011901 (2015). https://doi.org/10.1103/PhysRevC.92.011901

    Article  ADS  Google Scholar 

  10. J.L. Nagle, W.A. Zajc, Phys. Rev. C 99(5), 054908 (2019). https://doi.org/10.1103/PhysRevC.99.054908

    Article  ADS  Google Scholar 

  11. B. Schenke, C. Shen, P. Tribedy, Phys. Rev. C 102(4), 044905 (2020). https://doi.org/10.1103/PhysRevC.102.044905

    Article  ADS  Google Scholar 

  12. G. Giacalone, [ar**v:2305.19843 [nucl-th]]

  13. P. Braun-Munzinger, K. Redlich, J. Stachel, Particle production in heavy ion collisions, in Quark Gluon Plasma 3. ed. by R.C. Hwa, X.-Nian. Wang (World Scientific Publishing). https://doi.org/10.1142/9789812795533_0008

  14. J. Adam et al., [ALICE], Phys. Lett. B 772, 567–577 (2017). https://doi.org/10.1016/j.physletb.2017.07.017

  15. S.J. Das, G. Giacalone, P.A. Monard, J.Y. Ollitrault, Phys. Rev. C 97(1), 014905 (2018). https://doi.org/10.1103/PhysRevC.97.014905

    Article  ADS  Google Scholar 

  16. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123020

    Article  ADS  Google Scholar 

  17. S. Eremin, S. Voloshin, Phys. Rev. C 67, 064905 (2003). https://doi.org/10.1103/PhysRevC.67.064905

    Article  ADS  Google Scholar 

  18. A. Bialas, A. Bzdak, Phys. Lett. B 649, 263–268 (2007). https://doi.org/10.1016/j.physletb.2007.04.014. ([erratum: Phys. Lett. B 773 (2017), 681-681])

    Article  ADS  Google Scholar 

  19. S.S. Adler et al., [PHENIX], Phys. Rev. C 89(4), 044905 (2014). https://doi.org/10.1103/PhysRevC.89.044905

  20. C. Loizides, Phys. Rev. C 94(2), 024914 (2016). https://doi.org/10.1103/PhysRevC.94.024914

    Article  ADS  Google Scholar 

  21. B. Abelev, et al. [ALICE], Phys. Rev. C 88(4), 044909 (2013). https://doi.org/10.1103/PhysRevC.88.044909

  22. K.V. Yousefnia, A. Kotibhaskar, R. Bhalerao, J.Y. Ollitrault, Phys. Rev. C 105(1), 014907 (2022). https://doi.org/10.1103/PhysRevC.105.014907

    Article  ADS  Google Scholar 

  23. A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 58, 1671–1678 (1998). https://doi.org/10.1103/PhysRevC.58.1671

    Article  ADS  Google Scholar 

  24. G. Giacalone, Phys. Rev. Lett. 124, 202301 (2020). https://doi.org/10.1103/PhysRevLett.124.202301

    Article  ADS  Google Scholar 

  25. F.G. Gardim, G. Giacalone, M. Luzum, J.Y. Ollitrault, Nature Phys. 16(6), 615–619 (2020). https://doi.org/10.1038/s41567-020-0846-4

    Article  ADS  Google Scholar 

  26. S. Acharya et al., [ALICE], Phys. Lett. B 788, 166–179 (2019). https://doi.org/10.1016/j.physletb.2018.10.052

  27. B.B. Back et al., [PHOBOS], Phys. Rev. Lett. 85, 3100–3104 (2000). https://doi.org/10.1103/PhysRevLett.85.3100

  28. K.H. Ackermann et al., [STAR], Phys. Rev. Lett. 86, 402–407 (2001). https://doi.org/10.1103/PhysRevLett.86.402

  29. J.Y. Ollitrault, Phys. Rev. D 46, 229–245 (1992). https://doi.org/10.1103/PhysRevD.46.229

    Article  ADS  Google Scholar 

  30. J. Barrette et al., [E877], Phys. Rev. Lett. 73, 2532–2535 (1994). https://doi.org/10.1103/PhysRevLett.73.2532

  31. H. Appelshauser et al., [NA49], Phys. Rev. Lett. 80, 4136–4140 (1998). https://doi.org/10.1103/PhysRevLett.80.4136

  32. J.Y. Ollitrault, Anisotropy: A new signature of transverse collective flow?, in Proceedings of 2nd International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 1993), Calcutta, January 19-23, 1993, eds. by Bikash Sinha, Yogendra Pathak Viyogi, Sibaji Raha (World Scientific, 1993)

  33. P.F. Kolb, J. Sollfrank, U.W. Heinz, Phys. Rev. C 62, 054909 (2000). https://doi.org/10.1103/PhysRevC.62.054909

    Article  ADS  Google Scholar 

  34. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007). https://doi.org/10.1103/PhysRevLett.99.172301

    Article  ADS  Google Scholar 

  35. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99–104 (2014). https://doi.org/10.1016/j.physletb.2014.01.007

    Article  ADS  Google Scholar 

  36. D. Everett et al., [JETSCAPE], Phys. Rev. C 103(5), 054904 (2021). https://doi.org/10.1103/PhysRevC.103.054904

  37. S. Voloshin, Y. Zhang, Z. Phys. C 70, 665–672 (1996). https://doi.org/10.1007/s002880050141

    Article  Google Scholar 

  38. B. Jacak, P. Steinberg, Phys. Today 63N5, 39–43 (2010). https://doi.org/10.1063/1.3431330

    Article  Google Scholar 

  39. F.G. Gardim, J.Y. Ollitrault, Acta Phys. Polon. Supp. 16(1), 88 (2023). https://doi.org/10.5506/APhysPolBSupp.16.1-A88

    Article  Google Scholar 

  40. J. Velkovska, S.V. Greene, Observing droplets of near-perfect fluid in high energy nuclear collisions (2021). https://www.innovationnewsnetwork.com/observing-droplets-of-near-perfect-fluid-in-high-energy-nuclear-collisions/12067/

  41. S. Wang, Y.Z. Jiang, Y.M. Liu, D. Keane, D. Beavis, S.Y. Chu, S.Y. Fung, M. Vient, C. Hartnack, H. Stoecker, Phys. Rev. C 44, 1091–1095 (1991). https://doi.org/10.1103/PhysRevC.44.1091

    Article  ADS  Google Scholar 

  42. N. Borghini, P.M. Dinh, J.Y. Ollitrault, Phys. Rev. C 64, 054901 (2001). https://doi.org/10.1103/PhysRevC.64.054901

    Article  ADS  Google Scholar 

  43. A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011). https://doi.org/10.1103/PhysRevC.83.044913

    Article  ADS  Google Scholar 

  44. J. Adams et al. [STAR], Phys. Rev. Lett. 92, 062301 (2004). https://doi.org/10.1103/PhysRevLett.127.069901. [erratum: Phys. Rev. Lett. 127 (2021) no.6, 069901]

  45. J.Y. Ollitrault, Nucl. Phys. A 638, 195–206 (1998). https://doi.org/10.1016/S0375-9474(98)00413-8

    Article  ADS  Google Scholar 

  46. J.Y. Ollitrault, Phys. Rev. D 48, 1132–1139 (1993). https://doi.org/10.1103/PhysRevD.48.1132

    Article  ADS  Google Scholar 

  47. H.H. Gutbrod, K.H. Kampert, B. Kolb, A.M. Poskanzer, H.G. Ritter, R. Schicker, H.R. Schmidt, Phys. Rev. C 42, 640–651 (1990). https://doi.org/10.1103/PhysRevC.42.640

    Article  ADS  Google Scholar 

  48. D. Brill, C. Bormann, Y. Shin, J. Stein, K. Stiebing, R. Stock, H. Strobele, W. Ahner, R. Barth, M. Cieslak et al., Phys. Rev. Lett. 71, 336–339 (1993). https://doi.org/10.1103/PhysRevLett.71.336

    Article  ADS  Google Scholar 

  49. J. Barrette et al., E877. Phys. Rev. C 56, 3254–3264 (1997). https://doi.org/10.1103/PhysRevC.56.3254

    Article  ADS  Google Scholar 

  50. C. Pinkenburg et al., [E895], Phys. Rev. Lett. 83, 1295–1298 (1999). https://doi.org/10.1103/PhysRevLett.83.1295

  51. J.Y. Ollitrault, [ar**v:nucl-ex/9711003 [nucl-ex]]

  52. P. Danielewicz, G. Odyniec, Phys. Lett. B 157, 146–150 (1985). https://doi.org/10.1016/0370-2693(85)91535-7

    Article  ADS  Google Scholar 

  53. J.Y. Ollitrault, A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 80, 014904 (2009). https://doi.org/10.1103/PhysRevC.80.014904

    Article  ADS  Google Scholar 

  54. M. Luzum, J.Y. Ollitrault, Phys. Rev. C 87(4), 044907 (2013). https://doi.org/10.1103/PhysRevC.87.044907

    Article  ADS  Google Scholar 

  55. C.E. Aguiar, Y. Hama, T. Kodama, T. Osada, Nucl. Phys. A 698, 639–642 (2002). https://doi.org/10.1016/S0375-9474(01)01447-6

    Article  ADS  Google Scholar 

  56. Burak Han Alver, Measurement of Non-flow Correlations and Elliptic Flow Fluctuations in Au+Au collisions at RHIC, Massachusetts Institute of Technology (2010). http://web.mit.edu/mithig/theses/Burak-Alver-thesis.pdf

  57. S. Manly et al., [PHOBOS], Nucl. Phys. A 774, 523–526 (2006). https://doi.org/10.1016/j.nuclphysa.2006.06.079

  58. B. Alver et al., [PHOBOS], Phys. Rev. Lett. 98, 242302 (2007). https://doi.org/10.1103/PhysRevLett.98.242302

  59. J. Adams et al., [STAR], Phys. Rev. C 73, 064907 (2006). https://doi.org/10.1103/PhysRevC.73.064907

  60. S. Chatrchyan et al., [CMS], Eur. Phys. J. C 72, 2012 (2012). https://doi.org/10.1140/epjc/s10052-012-2012-3

  61. P.W. Anderson, Science 177(4047), 393–396 (1972). https://doi.org/10.1126/science.177.4047.393

    Article  ADS  Google Scholar 

  62. J. Putschke [STAR], Nucl. Phys. A 783, 507–510 (2007). https://doi.org/10.1016/j.nuclphysa.2006.11.105

  63. J. Putschke, private communication

  64. B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010). https://doi.org/10.1103/PhysRevC.82.039903. ([erratum: Phys. Rev. C 82 (2010), 039903])

    Article  ADS  Google Scholar 

  65. M. Luzum, J. Phys. G 38, 124026 (2011). https://doi.org/10.1088/0954-3899/38/12/124026

    Article  ADS  Google Scholar 

  66. G. Giacalone, L. Yan, J. Noronha-Hostler, J.Y. Ollitrault, J. Phys: Conf. Ser. 779(1), 012064 (2017). https://doi.org/10.1088/1742-6596/779/1/012064

    Article  Google Scholar 

  67. G. Giacalone, [ar**v:2208.06839 [nucl-th]]

  68. G. Nijs, W. van der Schee, [ar**v:2304.06191 [nucl-th]]

  69. J.D. Bjorken, Phys. Rev. D 27, 140–151 (1983). https://doi.org/10.1103/PhysRevD.27.140

    Article  ADS  Google Scholar 

  70. S. Acharya et al., [ALICE], JHEP 07, 103 (2018). https://doi.org/10.1007/JHEP07(2018)103

  71. M. Aaboud et al. [ATLAS], Eur. Phys. J. C 78(12), 997 (2018). https://doi.org/10.1140/epjc/s10052-018-6468-7

  72. M. Luzum, J.Y. Ollitrault, Nucl. Phys. A 904–905, 377c–380c (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.028

    Article  ADS  Google Scholar 

  73. A.V. Giannini et al. [ExTrEMe], Phys. Rev. C 107(4), 044907 (2023). https://doi.org/10.1103/PhysRevC.107.044907

  74. P. Carzon, S. Rao, M. Luzum, M. Sievert, J. Noronha-Hostler, Phys. Rev. C 102(5), 054905 (2020). https://doi.org/10.1103/PhysRevC.102.054905

    Article  ADS  Google Scholar 

  75. D. Teaney, L. Yan, Phys. Rev. C 83, 064904 (2011). https://doi.org/10.1103/PhysRevC.83.064904

    Article  ADS  Google Scholar 

  76. N. Borghini, P.M. Dinh, J.Y. Ollitrault, Phys. Rev. C 62, 034902 (2000). https://doi.org/10.1103/PhysRevC.62.034902

    Article  ADS  Google Scholar 

  77. E. Retinskaya, M. Luzum, J.Y. Ollitrault, Phys. Rev. Lett. 108, 252302 (2012). https://doi.org/10.1103/PhysRevLett.108.252302

    Article  ADS  Google Scholar 

  78. G. Aad et al., [ATLAS], Phys. Rev. C 86, 014907 (2012). https://doi.org/10.1103/PhysRevC.86.014907

  79. M. Miller, R. Snellings, [ar**v:nucl-ex/0312008 [nucl-ex]]

  80. A. Majumder, B. Muller, S.A. Bass, Phys. Rev. Lett. 99, 042301 (2007). https://doi.org/10.1103/PhysRevLett.99.042301

    Article  ADS  Google Scholar 

  81. A. Dumitru, Y. Nara, B. Schenke, M. Strickland, Phys. Rev. C 78, 024909 (2008). https://doi.org/10.1103/PhysRevC.78.024909

    Article  ADS  Google Scholar 

  82. J. Casalderrey-Solana, E.V. Shuryak, D. Teaney, J. Phys: Conf. Ser. 27, 22–31 (2005). https://doi.org/10.1088/1742-6596/27/1/003

    Article  ADS  Google Scholar 

  83. L.M. Satarov, H. Stoecker, I.N. Mishustin, Phys. Lett. B 627, 64–70 (2005). https://doi.org/10.1016/j.physletb.2005.08.102

    Article  ADS  Google Scholar 

  84. J. Ruppert, B. Muller, Phys. Lett. B 618, 123–130 (2005). https://doi.org/10.1016/j.physletb.2005.04.075

    Article  ADS  Google Scholar 

  85. V. Koch, A. Majumder, X.N. Wang, Phys. Rev. Lett. 96, 172302 (2006). https://doi.org/10.1103/PhysRevLett.96.172302

    Article  ADS  Google Scholar 

  86. E.V. Shuryak, Phys. Rev. C 76, 047901 (2007). https://doi.org/10.1103/PhysRevC.76.047901

    Article  ADS  MathSciNet  Google Scholar 

  87. A. Dumitru, F. Gelis, L. McLerran, R. Venugopalan, Nucl. Phys. A 810, 91–108 (2008). https://doi.org/10.1016/j.nuclphysa.2008.06.012

    Article  ADS  Google Scholar 

  88. S. Gavin, L. McLerran, G. Moschelli, Phys. Rev. C 79, 051902 (2009). https://doi.org/10.1103/PhysRevC.79.051902

    Article  ADS  Google Scholar 

  89. J. Takahashi, B.M. Tavares, W.L. Qian, R. Andrade, F. Grassi, Y. Hama, T. Kodama, N. Xu, Phys. Rev. Lett. 103, 242301 (2009). https://doi.org/10.1103/PhysRevLett.103.242301

    Article  ADS  Google Scholar 

  90. J.L. Nagle, Nucl. Phys. A 830, 147C-154C (2009). https://doi.org/10.1016/j.nuclphysa.2009.09.017

    Article  ADS  Google Scholar 

  91. B.H. Alver, C. Gombeaud, M. Luzum, J.Y. Ollitrault, Phys. Rev. C 82, 034913 (2010). https://doi.org/10.1103/PhysRevC.82.034913

    Article  ADS  Google Scholar 

  92. H. Petersen, G.Y. Qin, S.A. Bass, B. Muller, Phys. Rev. C 82, 041901 (2010). https://doi.org/10.1103/PhysRevC.82.041901

    Article  ADS  Google Scholar 

  93. B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 106, 042301 (2011). https://doi.org/10.1103/PhysRevLett.106.042301

    Article  ADS  Google Scholar 

  94. V. Khachatryan et al., [CMS], JHEP 09, 091 (2010). https://doi.org/10.1007/JHEP09(2010)091

  95. P. Skands, S. Carrazza, J. Rojo, Eur. Phys. J. C 74(8), 3024 (2014). https://doi.org/10.1140/epjc/s10052-014-3024-y

    Article  ADS  Google Scholar 

  96. G. Giacalone, A matter of shape: seeing the deformation of atomic nuclei at high-energy colliders, PhD thesis, Paris-Saclay University (2020). [ar**v:2101.00168 [nucl-th]]

  97. Z. Qiu, U.W. Heinz, Phys. Rev. C 84, 024911 (2011). https://doi.org/10.1103/PhysRevC.84.024911

    Article  ADS  Google Scholar 

  98. H. Niemi, G.S. Denicol, H. Holopainen, P. Huovinen, Phys. Rev. C 87(5), 054901 (2013). https://doi.org/10.1103/PhysRevC.87.054901

    Article  ADS  Google Scholar 

  99. F.G. Gardim, J. Noronha-Hostler, M. Luzum, F. Grassi, Phys. Rev. C 91(3), 034902 (2015). https://doi.org/10.1103/PhysRevC.91.034902

    Article  ADS  Google Scholar 

  100. D. Teaney, L. Yan, Phys. Rev. C 86, 044908 (2012). https://doi.org/10.1103/PhysRevC.86.044908

    Article  ADS  Google Scholar 

  101. F.G. Gardim, F. Grassi, M. Luzum, J.Y. Ollitrault, Phys. Rev. C 85, 024908 (2012). https://doi.org/10.1103/PhysRevC.85.024908

    Article  ADS  Google Scholar 

  102. F.G. Gardim, J.Y. Ollitrault, Phys. Rev. C 103(4), 044907 (2021). https://doi.org/10.1103/PhysRevC.103.044907

    Article  ADS  Google Scholar 

  103. L. Yan, J.Y. Ollitrault, Phys. Lett. B 744, 82–87 (2015). https://doi.org/10.1016/j.physletb.2015.03.040

    Article  ADS  Google Scholar 

  104. S. Acharya et al., [ALICE], Phys. Lett. B 773, 68–80 (2017). https://doi.org/10.1016/j.physletb.2017.07.060

  105. S. Acharya et al., [ALICE], JHEP 05, 085 (2020). https://doi.org/10.1007/JHEP05(2020)085

  106. J. Adam et al., [STAR], Phys. Lett. B 809, 135728 (2020). https://doi.org/10.1016/j.physletb.2020.135728

  107. L. Adamczyk et al. [STAR], Phys. Rev. Lett. 115(22), 222301 (2015). https://doi.org/10.1103/PhysRevLett.115.222301

  108. G. Giacalone, J. Jia, C. Zhang, Phys. Rev. Lett. 127(24), 242301 (2021). https://doi.org/10.1103/PhysRevLett.127.242301

    Article  ADS  Google Scholar 

  109. B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 89(6), 064908 (2014). https://doi.org/10.1103/PhysRevC.89.064908

    Article  ADS  Google Scholar 

  110. S. Acharya et al., [ALICE], Phys. Lett. B 784, 82–95 (2018). https://doi.org/10.1016/j.physletb.2018.06.059

  111. A.M. Sirunyan et al. [CMS], Phys. Rev. C 100(4), 044902 (2019). https://doi.org/10.1103/PhysRevC.100.044902

  112. G. Aad et al. [ATLAS], Phys. Rev. C 101(2), 024906 (2020). https://doi.org/10.1103/PhysRevC.101.024906

  113. M. Abdallah et al. [STAR], Phys. Rev. C 105(1), 014901 (2022). https://doi.org/10.1103/PhysRevC.105.014901

  114. C. Zhang, J. Jia, Phys. Rev. Lett. 128(2), 022301 (2022). https://doi.org/10.1103/PhysRevLett.128.022301

    Article  ADS  Google Scholar 

  115. Y.T. Rong, X.Y. Wu, B.N. Lu, J.M. Yao, Phys. Lett. B 840, 137896 (2023). https://doi.org/10.1016/j.physletb.2023.137896

    Article  Google Scholar 

  116. W. Ryssens, G. Giacalone, B. Schenke, C. Shen, Phys. Rev. Lett. 130(21), 212302 (2023). https://doi.org/10.1103/PhysRevLett.130.212302

    Article  ADS  Google Scholar 

  117. H.J. Xu, H. Li, X. Wang, C. Shen, F. Wang, Phys. Lett. B 819, 136453 (2021). https://doi.org/10.1016/j.physletb.2021.136453

    Article  Google Scholar 

  118. J. Jia, G. Giacalone, C. Zhang, Phys. Rev. Lett. 131(2), 022301 (2023). https://doi.org/10.1103/PhysRevLett.131.022301

    Article  ADS  Google Scholar 

  119. G. Giacalone, G. Nijs, W. van der Schee, [ar**v:2305.00015 [nucl-th]]

  120. D. Adhikari et al. [PREX], Phys. Rev. Lett. 126(17), 172502 (2021). https://doi.org/10.1103/PhysRevLett.126.172502

  121. J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu, U. Heinz, Phys. Rev. C 94(2), 024907 (2016). https://doi.org/10.1103/PhysRevC.94.024907

    Article  ADS  Google Scholar 

  122. G. Nijs, W. van der Schee, U. Gürsoy, R. Snellings, Phys. Rev. C 103(5), 054909 (2021). https://doi.org/10.1103/PhysRevC.103.054909

    Article  ADS  Google Scholar 

  123. B. Bally, J.D. Brandenburg, G. Giacalone, U. Heinz, S. Huang, J. Jia, D. Lee, Y.J. Lee, W. Li, C. Loizides, et al., [ar**v:2209.11042 [nucl-ex]]

  124. C. Adler et al., [STAR], Phys. Rev. C 66, 034904 (2002). https://doi.org/10.1103/PhysRevC.66.034904

  125. R.S. Bhalerao, J.Y. Ollitrault, S. Pal, Phys. Lett. B 742, 94–98 (2015). https://doi.org/10.1016/j.physletb.2015.01.019

    Article  ADS  Google Scholar 

  126. H. Mehrabpour, S.F. Taghavi, Eur. Phys. J. C 79(1), 88 (2019). https://doi.org/10.1140/epjc/s10052-019-6549-2

    Article  ADS  Google Scholar 

  127. N. Borghini, P.M. Dinh, J.Y. Ollitrault, Phys. Rev. C 63, 054906 (2001). https://doi.org/10.1103/PhysRevC.63.054906

    Article  ADS  Google Scholar 

  128. S.S. Adler et al., [PHENIX], Phys. Rev. Lett. 91, 182301 (2003). https://doi.org/10.1103/PhysRevLett.91.182301

  129. M. Aaboud et al., [ATLAS], JHEP 01, 051 (2020). https://doi.org/10.1007/JHEP01(2020)051

  130. R.S. Bhalerao, J.Y. Ollitrault, Phys. Lett. B 641, 260–264 (2006). https://doi.org/10.1016/j.physletb.2006.08.055

    Article  ADS  Google Scholar 

  131. S.A. Voloshin, A.M. Poskanzer, A. Tang, G. Wang, Phys. Lett. B 659, 537–541 (2008). https://doi.org/10.1016/j.physletb.2007.11.043

    Article  ADS  Google Scholar 

  132. K. Aamodt et al., [ALICE], Phys. Rev. Lett. 107, 032301 (2011). https://doi.org/10.1103/PhysRevLett.107.032301

  133. G. Aad et al., [ATLAS], Eur. Phys. J. C 74(11), 3157 (2014). https://doi.org/10.1140/epjc/s10052-014-3157-z

  134. CMS Collaboration, Probing hydrodynamics and the moments of the elliptic flow distribution in \(\sqrt{s_{\text{NN}}}=5.02 \text{ TeV }\) lead-lead collisions using higher-order cumulants, (2022). https://cds.cern.ch/record/2806158/files/HIN-21-010-pas.pdf

  135. G. Giacalone, L. Yan, J. Noronha-Hostler, J.Y. Ollitrault, Phys. Rev. C 95(1), 014913 (2017). https://doi.org/10.1103/PhysRevC.95.014913

    Article  ADS  Google Scholar 

  136. A.M. Sirunyan et al., [CMS], Phys. Lett. B 789, 643–665 (2019). https://doi.org/10.1016/j.physletb.2018.11.063

  137. S. Acharya et al., [ALICE], JHEP 07, 103 (2018). https://doi.org/10.1007/JHEP07(2018)103

  138. R.S. Bhalerao, G. Giacalone, J.Y. Ollitrault, Phys. Rev. C 99(1), 014907 (2019). https://doi.org/10.1103/PhysRevC.99.014907

  139. C. Alt et al., [NA49], Phys. Rev. C 68, 034903 (2003). https://doi.org/10.1103/PhysRevC.68.034903

  140. G. Aad et al., [ATLAS], Phys. Rev. C 90(2), 024905 (2014). https://doi.org/10.1103/PhysRevC.90.024905

  141. J. Adam et al., [ALICE], Phys. Rev. Lett. 117, 182301 (2016). https://doi.org/10.1103/PhysRevLett.117.182301

  142. P. Bozek, Phys. Rev. C 93(4), 044908 (2016). https://doi.org/10.1103/PhysRevC.93.044908

    Article  ADS  Google Scholar 

  143. G. Aad et al., [ATLAS], Eur. Phys. J. C 79(12), 985 (2019). https://doi.org/10.1140/epjc/s10052-019-7489-6

  144. S. Acharya et al., [ALICE], Phys. Lett. B 834, 137393 (2022). https://doi.org/10.1016/j.physletb.2022.137393

  145. G. Aad et al. [ATLAS], Phys. Rev. C 107(5), 054910 (2023). https://doi.org/10.1103/PhysRevC.107.054910

  146. G. Giacalone, Phys. Rev. C 99(2), 024910 (2019). https://doi.org/10.1103/PhysRevC.99.024910

    Article  ADS  Google Scholar 

  147. J. Jia, Phys. Rev. C 105(1), 014905 (2022). https://doi.org/10.1103/PhysRevC.105.014905

    Article  ADS  MathSciNet  Google Scholar 

  148. J. Jia, Phys. Rev. C 105(4), 044905 (2022). https://doi.org/10.1103/PhysRevC.105.044905

    Article  ADS  Google Scholar 

  149. B. Bally, M. Bender, G. Giacalone, V. Somà, Phys. Rev. Lett. 128(8), 082301 (2022). https://doi.org/10.1103/PhysRevLett.128.082301

    Article  ADS  Google Scholar 

  150. B. Bally, G. Giacalone, M. Bender, Eur. Phys. J. A 59(3), 58 (2023). https://doi.org/10.1140/epja/s10050-023-00955-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This article is based on two talks I gave, first at the Symposium on collective flow in nuclear matter (a celebration of Art Poskanzer’s life and career) in December 2022 at Berkeley, then in January 2023 under the program “Intersection of nuclear structure and high-energy nuclear collisions” hosted by the Institute for Nuclear Theory at the University of Washington, which I thank for support. I thank Giuliano Giacalone for useful input and detailed comments on the manuscript, and Johanna Stachel and Peter Braun-Munzinger for comments on the first version. This work is supported by the GLUODYNAMICS project funded by the “P2IO LabEx (ANR-10-LABX-0038)” in the framework “Investissements d’Avenir” (ANR-11-IDEX-0003-01) managed by the Agence Nationale de la Recherche (ANR), France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Ollitrault.

Additional information

Communicated by Thomas Duguet

In memory of Art Poskanzer.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ollitrault, JY. Measures of azimuthal anisotropy in high-energy collisions. Eur. Phys. J. A 59, 236 (2023). https://doi.org/10.1140/epja/s10050-023-01157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01157-7

Navigation