Log in

Effect of Orally Introduced Nickel Nanoparticles on the Trace Element Content in the Internal Organs of Rats

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The effect of nickel nanoparticles (NiNPs) on the bioaccumulation of essential and toxic chemical elements in the organs of rats after oral administration is evaluated. Wistar rats receive Ni in the form of a soluble salt (basic Ni carbonate) or two types of NiNPs with average diameters of 53.7 and 70.9 nm in doses of 0.1, 1.0, and 10 mg/kg body weight in terms of nickel for 92 days in the composition of the diet consumed. The content of Ni as well as Ag, Al, As, B, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Gd, K, La, Mg, Mn, Na, Pb, Rb, Se, Sr, Tl, V, and Zn is determined in the liver, kidneys, and spleen by inductively coupled plasma mass spectrometry. The content of Ni in the kidneys and brain increases under the influence of both the salt and NPs; in the liver and gonads, only after the introduction of the salt form, but not with NPs; in the spleen the level of Ni does not increase upon the intake of all Ni forms. In rats receiving NiNPs various changes are observed in indicators of trace-element homeostasis, including the increased bioaccumulation of Pb in the liver, gonads, and brain, As in the spleen, and Al in the liver and brain; inhibition of the accumulation of Mg, Mn, and Sr in the kidney and Ba in the kidneys and spleen. The content of Ca under the influence of NPs increased in the kidneys, but decreased in the gonads. A number of effects arising from the administration of Ni in the nanoform to animals are absent or have the opposite sign in the case of salt-form administration. NiNPs have little effect on the bioaccumulation of Cu, Fe, Zn, Se, Mg, and K. The effects demonstrated by the administration of NiNPs to animals can be considered as manifestations of nanometallomic patterns, i.e., processes mediated by changes in the gene expression of metalloproteins caused by NPs or products of their biological transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. T. H. Shin, S. Nithiyanandam, D. Y. Lee, et al., Nanomaterials 11, 2385 (2021). https://doi.org/10.3390/nano11092385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. L. Wang, J. Zhao, L. Cui, et al., Metallomics 13, mfab013 (2021). https://doi.org/10.1093/mtomcs/mfab013

  3. F. Benetti, L. Bregoli, I. Olivato, and E. Sabbioni, Metallomics 6, 729 (2014). https://doi.org/10.1039/c3mt00167a

    Article  CAS  PubMed  Google Scholar 

  4. A. A. Shumakova, I. V. Gmoshinski, V. A. Shipelin, et al., Nanotechnologies in Russia 13, 189 (2018). https://doi.org/10.1134/S1995078018020155

    Article  CAS  Google Scholar 

  5. A. A. Shumakova, I. V. Gmoshinski, S. A. Khotimchenko, and E. N. Trushina, IOP Conf. Ser.: Mater. Sci. Eng. 98, 012043 (2015). https://doi.org/10.1088/1757-899X/98/1/012043

  6. D. Lei, D. C. Lee, A. Magasinski, et al., ACS Appl. Mater. Interfaces 8, 2088 (2016). https://doi.org/10.1021/acsami.5b10547

    Article  CAS  PubMed  Google Scholar 

  7. P. Zhang, L. Wang, S. Yang, et al., Nat. Commun. 8, 15020 (2017). https://doi.org/10.1038/ncomms15020

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  8. S. Borowska and M. M. Brzoska, J. Appl. Toxicol. 35, 551 (2015). https://doi.org/10.1002/jat.3129

    Article  CAS  PubMed  Google Scholar 

  9. G. Elango, S. M. Roopan, K. I. Dhamodaran, et al., J. Photochem. Photobiol., B 162, 162 (2016). https://doi.org/10.1016/j.jphotobiol.2016.06.045

    Article  CAS  PubMed  Google Scholar 

  10. B. Katsnelson, L. Privalova, M. P. Sutunkova, et al., Int. J. Nanomed. 10, 3013 (2015). https://doi.org/10.2147/IJN.S80843

    Article  CAS  Google Scholar 

  11. R. Magaye and J. Zhao, Environ. Toxicol. Pharmacol. 34, 644 (2012). https://doi.org/10.1016/j.etap.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  12. A. Ali, M. Suhail, S. Mathew, et al., J. Nanosci. Nanotechnol. 16, 40 (2016). https://doi.org/10.1166/jnn.2016.10885

    Article  CAS  PubMed  Google Scholar 

  13. V. A. Shipelin, A. A. Shumakova, E. N. Trushina, et al., Nanomaterials (Basel) 12, 3523 (2022).https://doi.org/10.3390/nano12193523

    Article  CAS  PubMed  Google Scholar 

  14. Committee for the Update of the Guide for the Care and Use of Laboratory Animals; Institute for Laboratory Animal Research (ILAR); Division on Earth and Life Studies (DELS); National Research Council of the National Academies, Guide for the Care and Use of Laboratory Animals, 8th ed. (National Academies Press, Washington, D.C., 2011).

    Google Scholar 

  15. A. A. Shumakova, V. A. Shipelin, E. V. Leontyeva, and I. V. Gmoshinski, Biol. Trace Elem. Res. 200, 281 (2022). https://doi.org/10.1007/s12011-021-02642-0

    Article  CAS  PubMed  Google Scholar 

  16. W. Begum, S. Rai, S. Banerjee, et al., RSC Adv. 12, 9139 (2022). https://doi.org/10.1039/d2ra00378c

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. A. Graff, E. Barrez, P. Baranek, et al., J. Solution Chem. 46, 25 (2017). https://doi.org/10.1007/s10953-016-0555-x

    Article  CAS  PubMed  Google Scholar 

  18. F. Ogata, N. Nagai, M. Toda, et al., Chem. Pharm. Bull. (Tokyo) 67, 487 (2019). https://doi.org/10.1248/cpb.c19-00037

    Article  CAS  PubMed  Google Scholar 

  19. J. R. Pietruska, X. Liu, A. Smith, et al., Toxicol. Sci. 124, 138 (2011). https://doi.org/10.1093/toxsci/kfr206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. **, Z. Ke, X. Benqiong, and W. Qun, Biometals 17, 157 (2004). https://doi.org/10.1023/b:biom.0000018373.85342.36

    Article  PubMed  Google Scholar 

  21. M. B. Virgolini and M. Aschner, Adv. Neurotoxicol. 5, 159 (2021). https://doi.org/10.1016/bs.ant.2020.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  22. P. G. Hogan, L. Chen, J. Nardone, and A. Rao, Genes Dev. 17, 2205 (2003). https://doi.org/10.1101/gad.1102703

    Article  CAS  PubMed  Google Scholar 

  23. T. Cai, X. Li, J. Ding, et al., Curr. Cancer. Drug. Targets 11, 548 (2011). https://doi.org/10.2174/156800911795656001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C. Huang, J. Li, M. Costa, et al., Cancer Res. 61, 8051 (2001).

    CAS  PubMed  Google Scholar 

  25. GeneMANIA. https://genemania.org/

  26. M. Dey and R. K. Singh, Pharmacol. Rep. 74, 439 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. G. de Paula Arrifano, M. E. Crespo-Lopez, A. Lopes-Araújo, et al., Neurochem. Res. 48, 1047 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.G. Masyutin (Faculty of Biology, Moscow State University) for the preparation of electron-microscopy images of the nanoparticles.

Funding

This study was supported by a State Task grant (Basic Research Program, Ministry of Science and Higher Education of the Russian Federation, no. 0529-2019-0057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gmoshinski.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Statement on the welfare of animals. The work was performed in accordance with the rules of good laboratory practice and international recommendations for the humane treatment of animals [14] and according to the MU 1.2.2520-09 guidelines “Toxicological and hygienic safety assessment of nanomaterials.” The design of the experiment was approved by the Ethics Committee of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (protocol no. 7 of  September 17, 2021). All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Novikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumakova, A.A., Kolobanov, A.I., Shipelin, V.A. et al. Effect of Orally Introduced Nickel Nanoparticles on the Trace Element Content in the Internal Organs of Rats. Nanotechnol Russia 18, 960–970 (2023). https://doi.org/10.1134/S263516762360102X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762360102X

Navigation