Log in

Study of Pressing and Sintering of Gd2HfO5 Powder Obtained by Mechanochemical Synthesis

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Gadolinium hafnate (Gd2HfO5) powders are obtained by mechanochemical synthesis from hafnium and gadolinium oxides. XRD, chemical analysis, and scanning and transmission electron microscopy show the transition of initial oxides into single-phase nanodisperse gadolinium hafnate after 30 min of mechanochemical synthesis. This powder is studied for its compactibility and sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Sickafus, K.E., Grimes, R.W., Valdez, J.A., Cleave, A., Ming, T., Ishimaru, M., Corish, S.M., Stanek, C.R., and Uberuaga, B.P., Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides, Nat. Mater., 2007, no. 6, pp. 217–223.

  2. Pisovanyi, V.D., Varlashova, E.E., Fridman, S.P., Ponomarenko, V.B., and Shcheglov, A.V., Comparative characteristics of absorber cluster assemblies of VVÉR-1000 and PWR reactors, At. Energy, 1998, vol. 84, pp. 372–377. https://doi.org/10.1007/BF02413895

    Article  CAS  Google Scholar 

  3. Belash, N.N., Kushtym, A.V., Tatarinov, V.R., and Chernov, I.A., Analysis of the development of structures and materials of pels AR CPS of increased efficiency, Yad. Radiats. Tekhnol., 2007, vol. 7, nos. 3–4, pp. 18–28.

  4. Risovannyi, V.D., Zakharov, A.V., and Muraleva, E.M., New promising absorbing materials for thermal neutron nuclear reactors, Vopr. At. Nauki Tekh., Fiz. Radiats. Povrezh. Radiats. Materialoved., 2005, vol. 86, no. 3, pp. 87–93.

    Google Scholar 

  5. Risovany, V.D., Zakharov, A.V., Muraleva, E.M., Kosenkov, V.M., and Latypov, R.N., Dysprozium hafnate as absorbing material for control rods, J. Nucl. Mater., 2006, vol. 355, pp. 163–170.

    Article  CAS  Google Scholar 

  6. Fridman, S.R., Risovany, V.D., et al., Radiation stability of WWER-1000 CPS AR absorber element with boron carbide, VANT. Phys. Radiat. Damages Radiat. Sci. Mater., 2001, no. 2, pp. 84–90.

  7. Abdusalyamova, M.N., Kabgov, Kh.B., and Makhmudov, F.A., Receipt and properties of monostructured dysprosium oxide, Dokl. Akad. Nauk Resp. Tadzhikistan, 2013, vol. 56, no. 2, pp. 130–135.

    Google Scholar 

  8. Khalameida, S.V., Some new approaches in the mechanochemical synthesis of nanodisperse barium titanate, Nanosist., Nanomater., Nanotekhnol., 2009, vol. 7, no. 3, pp. 911–918.

    CAS  Google Scholar 

  9. Lyashenko, L.P., Shcherbakova, L.G., Kolbanev, I.V., Knerel’man, E.I., and Davydova, G.I., Mechanism of structure formationin samarium and holmium titanates prepared from mechanically activated oxides, Inorg. Mater., 2007, vol. 43, no. 1, pp. 46–54.

    Article  CAS  Google Scholar 

  10. Szafraniak-Wiza, I., Hilczer, B., Talik, E., Pietraszko, A., and Malic, B., Ferroelectric perovskite nanopowders obtained by mechanochemical synthesis, Process. Appl. Ceram., 2010, no. 4, pp. 99–106.

  11. Safronova, T.V., Sadilov, I.S., Chaikun, K.V., Shatalova, T.B., and Filippov, Ya.Yu., Ceramics based on a powder mixture of calcium hydroxyapatite, monocalcium phosphate monohydrate, and sodium hydrogen phosphate homogenized under mechanical activation conditions, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 879–885. https://doi.org/10.1134/S2075113320040346

    Article  Google Scholar 

  12. Shindo, D. and Oikawa, T., Analytical Electron Microscopy for Materials Science, Tokyo: Springer, 2002. https://doi.org/10.1007/978-4-431-66988-3

    Book  Google Scholar 

  13. Zakharov, A.V., Risovanyi, V.D., Muraleva, E.M., and Sokolov, V.F., Development and development of production of dysprosium hafnate as an absorbing material for regulators of promising thermal neutron reactors, Sb. Tr. OAO “GNTs NIIAR,” 2011, vol. 2, pp. 8–13.

    Google Scholar 

  14. Perova, E.B., Spiridonov, L.N., and Komissarova, L.N., Phase equilibria in the HfO2–Dy2O3 system, Izv. Akad. Nauk SSSR. Neorg. Mater., 1982, vol. 8, no. 10, pp. 1878–1882.

    Google Scholar 

  15. Popov, V.V., Menushenkov, A.P., Zubavichus, Ya.V., Veligzhanin, A.A., Yaroslavtsev, A.A., et al., Trends in formation of the nanocrystalline structure and cationic ordering in the Dy2O3:HfO2 (1:1) system, Russ. J. Inorg. Chem., 2013, vol. 58, pp. 331–337. https://doi.org/10.1134/S0036023613030121

    Article  CAS  Google Scholar 

  16. Popov, V.V., Menushenkov, A.P., Zubavichus, Ya.V., Korovin, S.A., Fortal’nova, E.A., et al., Structural characteristics and thermophysical properties of complex ceramic oxides in the system Dy2O3–HfO2, Glass Ceram., 2016, vol. 73, pp. 47–52. https://doi.org/10.1007/s10717-016-9823-x

    Article  CAS  Google Scholar 

  17. Voronko, Yu.K., Sobol, A.A., and Shukshin, V.E., Monoclinic-tetragonal phase transition in zirconium and hafnium dioxides: A high-temperature Raman scattering investigation, Phys. Solid State, 2007, vol. 49, no. 10, pp. 1963–1968. https://doi.org/10.1134/S1063783407100253

    Article  CAS  Google Scholar 

  18. Prokip, V.E., Cand. Sci. (Chem.) Dissertation, Novosibirsk, 2017.

Download references

Funding

This study was financially supported by Russian Foundation for Basic Research (project no. 19‑08‑00273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. V. Eremeeva.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeeva, Z.V., Vorotylo, S.A., Kaplanskii, Y.Y. et al. Study of Pressing and Sintering of Gd2HfO5 Powder Obtained by Mechanochemical Synthesis. Inorg. Mater. Appl. Res. 13, 936–939 (2022). https://doi.org/10.1134/S2075113322040116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322040116

Keywords:

Navigation