Log in

Fabrication of Nanodispersed Powder of Dysprosium Hafnate Dy2HfO5 by Mechanochemical Method

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Dysprosium hafnate Dy2HfO5 powders are prepared through mechanochemical synthesis from hafnium and dysprosium oxides. The structure and main physicochemical characteristics are studied using XRD, scanning electron spectroscopy, Raman spectroscopy (CS spectra), TEM, and chemical analysis. XRD and analysis of CS spectra shows that full transformation of initial oxides into single-phase nanodispersed dysprosium hafnate (Dy2HfO5) occurs during mechanical treatment of the mixture for 40 min. Raman spectrometry of the dysprosium hafnate powder prepared through mechanosynthesis shows the absence of unreacted hafnium and dysprosium oxides and the formation of single-phase dysprosium hafnate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Sickafus, K.E., Grimes, R.W., Valdez, J.A., Cleave, A., Ming, T., Ishimaru, M., Corish, S.M., Stanek, C.R., and Uberuaga, B.P., Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides, Nat. Mater., 2007, vol. 6, pp. 217–223.

    Article  CAS  Google Scholar 

  2. Pisovanyi, V.D., Varlashova, E.E., Fridman, S.P., Ponomarenko, V.B., and Shcheglov, A.V., Comparative characteristics of absorber cluster assemblies of VVÉR-1000 and PWR reactors, At. Energy, 1998, vol. 84, pp. 372–377. https://doi.org/10.1007/BF02413895

    Article  CAS  Google Scholar 

  3. Belash, N.N., Kushtym, A.V., Tatarinov, V.R., and Chernov, I.A., Analysis of the development of structures and materials of absorbing elements absorbing rods of the control and protection system of increased efficiency, Yad. Radiats. Tekhnol., 2007, vol. 7, nos. 3–4, pp. 18–28.

  4. Risovannyi, V.D., Zakharov, A.V., and Muraleva, E.M., New promising absorbing materials for thermal neutron nuclear reactors, Vopr. At. Nauki Tekh., Fiz. Radiats. Povrezh. Radiats. Materialoved., 2005, no. 3, pp. 87–93.

  5. Risovany, V.D., Zakharov, A.V., Muraleva, E.M., Kosenkov, V.M., and Latypov, R.N., Dysprosium hafnate as absorbing material for control rods, J. Nucl. Mater., 2006, vol. 355, pp. 163–170.

    Article  CAS  Google Scholar 

  6. Fridman, S.R., Risovany, V.D., et al., Radiation stability of WWER-1000 CPS AR absorber element with boron carbide, VANT. Ser.: Phys. Radiat. Damages Radiat. Sci. Mater., 2001, no. 2, pp. 84–90.

  7. Safronova, T.V., Sadilov, I.S., Chaikun, K.V., Shata-lova, T.B., and Filippov, Ya.Yu., Ceramics based on a powder mixture of calcium hydroxyapatite, monocalcium phosphate monohydrate, and sodium hydrogen phosphate homogenized under mechanical activation conditions, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 879–885. https://doi.org/10.1134/S2075113320040346

    Article  Google Scholar 

  8. Abdusalyamova, M.N., Kabgov, Kh.B., Makh-mudov, F.A., and Shaimardanov, E.N., Receipt and properties of monostructured dysprosium oxide, Dokl. Akad. Nauk Resp. Tadzhikistan, 2013, vol. 56, no. 2, pp. 130–135. https://www.elibrary.ru/item.asp?id=19394817

  9. Khalameyda, S.V., New approaches for mechanochemical synthesis of nanodispersed barium titanante, Nanosyst., Nanomater., Nanotechnol., 2009, vol. 7, no. 3, pp. 911–918.

    Google Scholar 

  10. Lyashenko, L.P., Shcherbakova, L.G., Kolbanev, I.V., Knerel’man, E.I., and Davydova, G.I., Mechanism of structure formationin samarium and holmium titanates prepared from mechanically activated oxides, Inorg. Mater., 2007, vol. 43, no. 1, pp. 46–54.

    Article  CAS  Google Scholar 

  11. Szafraniak-Wiza, I., Hilczer, B., Talik, E., Pietraszko, A., and Malic, B., Ferroelectric perovskite nanopowders obtained by mechanochemical synthesis, Process. Appl. Ceram., 2010, vol. 4, no. 3, pp. 99–106.

    Article  CAS  Google Scholar 

  12. Anokhin, A.S., Lyanguzov, N.V., Roshal’, S.B., et al., Raman spectra of polycrystalline bismuth titanate nanotubes, Phys. Solid State, 2011, vol. 53, no. 9, pp. 1867–1871. https://doi.org/10.1134/S1063783411090034

    Article  CAS  Google Scholar 

  13. Shindo, D., and Oikawa, T., Analytical Electron Microscopy for Materials Science, Tokyo: Springer, 2002.

    Book  Google Scholar 

  14. Zakharov, A.V., Risovannyi, V.D., Muraleva, E.M., and Sokolov, V.F., Development and development of production of dysprosium hafnate as an absorbing material for the regulatory authorities of promising thermal neutron reactors, Sb. Tr. Gos. Nauchn. Tsentra “Nauchno-Issled. Inst. At. Reaktor.”, 2011, no. 2, pp. 8–13.

  15. Perova, E.B., Spiridonov, L.N., and Komisarova, L.N., Phase equilibria in the HfO2–Dy2O3 system, Izv. Akad. Nauk SSSR, Neorg. Mater., 1982, vol. 8, no. 10, pp. 1878–1882.

    Google Scholar 

  16. Popov, V.V., Menushenkov, A.P., Zubavichus, Ya.V., Veligzhanin, A.A., Yaroslavtsev, A.A., et al., Trends in formation of the nanocrystalline structure and cationic ordering in the Dy2O3–HfO2 (1:1) system, Russ. J. Inorg. Chem., 2013, vol. 58, no. 3, pp. 331–337. https://doi.org/10.1134/S0036023613030121

    Article  CAS  Google Scholar 

  17. Popov, V.V., Menushenkov, A.P., Zubavichus, Ya.V., Korovin, S.A., Fortal’nova, E.A., et al., Structural characteristics and thermophysical properties of complex ceramic oxides in the system Dy2O3–HfO2, Glass Ceram., 2016, vol. 73, pp. 47–52. https://doi.org/10.1007/s10717-016-9823-x

    Article  CAS  Google Scholar 

  18. Voronko, Yu.K., Sobol, A.A., and Shukshin, V.E., Monoclinic-tetragonal phase transition in zirconium and hafnium dioxides: A high-temperature Raman scattering investigation, Phys. Solid State, 2007, vol. 49, no. 10, pp. 1963–1968. https://doi.org/10.1134/S1063783407100253

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-08-00273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. V. Eremeeva.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeeva, Z.V., Kaplanskiy, Y.Y., Vorotylo, S. et al. Fabrication of Nanodispersed Powder of Dysprosium Hafnate Dy2HfO5 by Mechanochemical Method. Inorg. Mater. Appl. Res. 12, 1042–1046 (2021). https://doi.org/10.1134/S2075113321040134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321040134

Keywords:

Navigation