Log in

Peculiarities of Structure Formation in Ni–C, Al–C, and Ni–Al–C Systems at High-Temperature Heating

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

We performed high-temperature treatment of the Ni–C, Al–C, and Ni–Al–C powder mixtures (5 wt % C (soot)) up to the melting point of the respective metals and found that the melt particles coagulate with formation of Ni, Al, and NiAl (intermetallic) spherical particles, respectively. The Ni particles have almost perfect spherical shape and a multilayer graphite coating. The NiAl particles have a thin graphene (graphite) coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Liu, Y.-L., Dai, Z.-H., and Wang, W.-T., Influence of carbon – vacancy interaction on carbon and vacancy diffusivity in tungsten, Comput. Mater. Sci., 2014, vol. 83, pp. 1–4. https://doi.org/10.1016/j.commatsci.2013.10.034

    Article  CAS  Google Scholar 

  2. Liu, Y.-L., Zhou, H.-B., Zhang, Y., and Duan, C., Point defect concentrations of impurity carbon in tungsten, Comput. Mater. Sci., 2012, vol. 62, pp. 282–284. https://doi.org/10.1016/j.commatsci.2012.05.012

    Article  CAS  Google Scholar 

  3. Liu, Y.-L., Zhou, H.-B., Zhang, Y., Lu, G.-H., and Luo, G.-N., Interaction of C with vacancy in W: A first-principles study, Comput. Mater. Sci., 2011, vol. 50, no. 11, pp. 3213–3217. https://doi.org/10.1016/j.commatsci.2011.06.003

    Article  CAS  Google Scholar 

  4. Hua, X., Ma, J., Dou, H., Niu, Y., Zhang, Y., and Song, Q., Effects of C impurities on the elastic properties of NiAl intermetallics, Prog. Nat. Sci.: Mater. Int., 2014, vol. 24, no. 6, pp. 637–641. https://doi.org/10.1016/j.pnsc.2014.10.007

    Article  CAS  Google Scholar 

  5. Razumovskii, I.M., Ruban, A.V., Razumovskiy, V.I., Logunov, A.V., Larionov, V.N., Ospennikova, O.G., Poklad, V.A., and Johansson, B., New generation of Ni-based superalloys design on the basis of first principles calculations, Mater. Sci. Eng., A 2008, vol. 497, nos. 1–2, pp. 18–24. https://doi.org/10.1016/j.msea.2008.08.013

  6. Razumovskiy, V.I., Lozovoi, A.Y., and Razumovskii, I.M., First principles-aided design of new Ni-base superalloy. Influence of transition metal alloying elements on grain boundary and bulk cohesion, Acta Mater., 2015, vol. 82, pp. 369–377. https://doi.org/10.1016/j.actamat.2015.12.030

    Article  CAS  Google Scholar 

  7. Modern Methods of Crystal Structure Prediction, Oga-nov, A.R., Ed., Berlin: Wiley-VCH, 2010. ISBN 978-3-527-40939-6

    Google Scholar 

  8. Zhang, H.F., Dohnalkova, A.C., Wang, C.M., Young, J.S., Buck, E.C., and Wang, L.S., Lithium-assisted self-assembly of aluminum carbide nanowires and nanoribbons, Nano Lett., 2002, vol. 2, no. 2, pp. 105–108. https://doi.org/10.1021 / nl015656k

  9. He, C.N., Zhao, N.Q., Shi, C.S., and Song, S.Z., Fabrication of aluminum carbide nanowires by a nano-template reaction, Carbon, 2010, vol. 48, pp. 931–938. https://doi.org/10.1016/j.carbon.2009.10.004

    Article  CAS  Google Scholar 

  10. Sun, Y., Cui, H., Gong, L., Chen, J., Shen, P.K., and Wang, C.X., Field nanoemitter: One-dimension Al4C3 ceramics, Nanoscale, 2011, vol. 3, pp. 2978–2982. https://doi.org/10.1039/c1nr10194c

    Article  CAS  PubMed  Google Scholar 

  11. Portnoi, V.K., Leonov, A.V., Logacheva, A.I., and Logacheva, A.V., Mechanochemical synthesis and compaction of intermetallic alloys containing nanocrystalline substructure elements, Bull. Russ. Acad. Sci.: Phys., 2012, vol. 76, no. 1, pp. 61–63. https://doi.org/10.3103/S1062873812010236

    Article  CAS  Google Scholar 

  12. Portnoi, V.K., Leonov, A.V., Logachev, A.V., Streletskii, A.N., and Popov, V.A., Mechanical alloying as method for introducing carbon in Ni3Al intermetallide, Phys. Met. Metallogr., 2012, vol. 113, pp. 1169–1181. https://doi.org/10.1134/S0031918X12120083

    Article  Google Scholar 

  13. Portnoi, V.K., Leonov, A.V., Fadeeva, V.I., and Fedotov, S.A., Mechanochemical synthesis in the Ni–Al–C system, Bull. Russ. Acad. Sci.: Phys., 2007, vol. 71, no. 12, pp. 1693–1696.

    Article  Google Scholar 

  14. Bubnenkov, I.A., Shevyakov, V.P., Shipkov, N.N., Nikelina, T.A., and Bubnenkov, V.I., Influence of carbon concentration in nickel melt on the process of interaction with various carbon materials, Tsvetn. Met., 1998, no. 4, pp. 55–57.

  15. Ip, S.W., Sridhar, R., Toguri, J.M., Stephenson, T.F., and Warner, A.E.M., Wettability of nickel coated graphite by aluminum, Mater. Sci. Eng., A, 1998, vol. 244, no. 1, pp. 31–38. https://doi.org/10.1016/S0921-5093(97)00823-X

    Article  Google Scholar 

  16. Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, pp. 1779–1791. https://doi.org/10.1039/B401358C

    Article  CAS  Google Scholar 

  17. Shelton, J.C., Patil, H.R., and Blakely, J.M., Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition, Surf. Sci., 1974, vol. 43, pp. 493–520. https://doi.org/10.1016/0039-6028(74)90272-6

    Article  CAS  Google Scholar 

  18. Rut’kov, E.V., Afanas’eva, E.Yu., Petrov, V.N., and Gall, N.R., Fabrication of graphene and graphite films on the Ni(111) surface, Tech. Phys., 2016, vol. 61, no. 11, pp. 1724–1728. https://doi.org/10.1134/S1063784216110219

    Article  CAS  Google Scholar 

  19. Bleu, Y., Barnier, V., Christien, F., Bourquard, F., Loir, A.-S., and Garrelie, F., Dynamics of carbon diffusion and segregation through nickel catalyst, investigated by in-situ XPS, during the growth of nitrogen-doped grapheme, Carbon, 2019, vol. 155, pp. 410–420. https://doi.org/10.1016/j.carbon.2019.08.084

    Article  CAS  Google Scholar 

  20. Sytschev, A.E., Vadchenko, S.G., Boyarchenko, O.D., and Shchukin, A.S., Ni3Al/C composites by thermal explosion, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 1, pp. 64–65. https://doi.org/10.3103/S1061386218010090

    Article  Google Scholar 

  21. Sytschev, A.E., Kochetov, N.A., Vadchenko, S.G., Kovalev, D.Yu., and Shchukin, A.S., Processing of Ni–Al intermetallic with 2D carbon components, Mater. Chem. Phys., 2019, vol. 238, art. ID 121898. https://doi.org/10.1016/j.matchemphys.2019.121898

    Article  CAS  Google Scholar 

  22. Shcherbakov, A.V. and Sychev, A.E., Synthesis of Ni–Al–C composite with multilayer carbon components by electrothermal explosion under pressure, Fiz. Goreniya Vzryva (in press).

  23. Sytschev, A.E., Kochetov, N.A., and Shchukin, A.S., Structure and properties of SPS-produced carbon-containing NiAl, Int. J. Self-Propag. High-Temp. Synth., 2020, vol. 29, no. 2, pp. 58–60. https://doi.org/10.3103/S1061386220010124

    Article  Google Scholar 

  24. Kochetov, N.A. and Sychev, A.E., Effect of carbon content and mechanical activation on the combustion of a Ni–Al–C system, Combust., Explos. Shock Waves, 2019, vol. 55, no. 6, pp. 686–691. https://doi.org/10.1134/S001050821906008X

    Article  Google Scholar 

  25. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Constitution Diagrams of Binary Metallic Systems), Moscow: Mashinostroenie, 1996, vols. 1–3.

  26. Loktyushin, V.A., Adamenko, N.A., and Gurevich, L.M., Kontaktnye vzaimodeistviya v kompozitsionnykh materialakh: Uchebnoe posobie (Contact Interactions in Composite Materials: Handbook), Volgograd: Volgograd State Tech. Univ., 2003.

  27. Nikolenko, Yu.M. and Ziatdinov, A.M., Nanographites and their film structures on various substrates, Khim. Khim. Tekhnol., 2015, vol. 58, no. 7, pp. 36–40.

    CAS  Google Scholar 

  28. Titorov, D.B., Self-organization of atoms into nanostructures, Materialovedenie, 2011, no. 12, pp. 2–10.

  29. Schuster, J.C. and Nowotny, H., The ternary system Nickel– Aluminum–Carbon, Monatsh. Chem., 1982, vol. 113, pp. 163–170.

    Article  CAS  Google Scholar 

  30. Shustin, E.G., Isaev, N.V., Luzanov, V.A., and Temiryazeva, M.P., Formation of thin graphite films upon carbon diffusion through nickel, Tech. Phys., 2017, vol. 62, no. 7, pp. 1069–1072. https://doi.org/10.1134/S1063784217070210

    Article  CAS  Google Scholar 

  31. Amini, S., Kalaantari, H., Garay, J., Balandin, A.A., and Abbaschian, R., Growth of graphene and graphite nanocrystals from a molten phase, J. Mater. Sci., 2011, vol. 46, pp. 6255–6263.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18‑08‑00181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sytschev.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadchenko, S.G., Shchukin, A.S., Sytschev, A.E. et al. Peculiarities of Structure Formation in Ni–C, Al–C, and Ni–Al–C Systems at High-Temperature Heating. Inorg. Mater. Appl. Res. 13, 1–6 (2022). https://doi.org/10.1134/S2075113322010385

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322010385

Keywords:

Navigation