Log in

Characteristics of Reactive Ni3Sn4 Formation and Growth in Ni-Sn Interlayer Systems

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The near-isothermal growth and formation of Ni3Sn4 intermetallic compounds (IMC) in Ni-Sn interlayer systems was studied in the solid state at 473 K (200 °C) and under solid–liquid conditions at 523 and 573 K (250 °C and 300 °C) from an initial state of a few seconds. Scalloped solid-state IMC formation was mainly driven by grain boundary diffusion of Ni through the IMC layer combined with the grain coarsening of the IMC layer. Under solid–liquid conditions, the formation of faceted and needle-shaped Ni3Sn4 grains as well as an atypical IMC growth behavior with similar parabolic growth constants for 523 K and 573 K (250 °C and 300 °C) was observed within the first 180 seconds of the holding time, and IMC growth occurred as an isothermal solidification from the Ni-saturated Sn melt. Due to the progressive densification of the IMC layer and the diffusion-controlled growth, the kinetics slowed down by approximately one order of magnitude after 180 seconds of annealing. The final stage was characterized by the formation of IMC islands ahead of the interfacial Ni3Sn4 layer. Needle-like IMC growth was effectively suppressed under combined solid-state and solid–liquid conditions. Textured Ni3Sn4 IMC formation at the Ni-Sn interface was approved with pole figure measurements. The activation energy Q for solid–liquid IMC formation was calculated as 43.3 kJ/mol, and processing maps for IMC growth and Sn consumption were derived as functions of temperature and time, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Sakuma, P.S. Andry, C.K. Tsang, S.L. Wright, B. Dang, C.S. Patel, B.C. Webb, J. Maria, E.J. Sprogis, S.K. Kang, R.J. Polastre, R.R. Horton and J.U. Knickerbocker: IBM J. Res. Dev., 2008, vol. 52, pp. 611-622.

    Article  Google Scholar 

  2. G.O. Cook III and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305-5323.

    Article  Google Scholar 

  3. H. Okamoto: J. Phase Equilib. Diff., 2008, vol. 29, pp. 297-298.

    Article  Google Scholar 

  4. D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang and J.K.L. Lai: J. Alloy. Compd., 2005, vol. 392, pp. 192-199.

    Article  Google Scholar 

  5. J. Liang, N. Dariavach, P. Callahan and D. Shangguam: Mater. Trans. JIM, 2006, vol. 47, pp. 317-325.

    Article  Google Scholar 

  6. J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley and D.A. Hutt: Acta Mater., 2006, vol. 54, pp. 2907-2922.

    Article  Google Scholar 

  7. J. Shen, Y.C. Chan and S.Y. Liu: Acta Mater., 2009, vol. 57, pp. 5196-5206.

    Article  Google Scholar 

  8. Y. Tian, J. Chow, X. Liu, Y.P. Wu and S.K. Sitaraman: J. Electron Mater., 2013, vol. 42, pp. 230-239.

    Article  Google Scholar 

  9. R.W. Yang, Y.W. Chang, W.C. Sung and C. Chen: Mater. Chem. Phys., 2012, vol. 134, pp. 340-344.

    Article  Google Scholar 

  10. M.N. Islam, Y.C. Chan, A. Sharif and M.O. Alam: Microelectron. Reliab., 2003, vol. 43, pp. 2031-2037.

    Article  Google Scholar 

  11. M. Schaefer, R. Fournelle and J. Liang: J. Electron. Mater., 1998, vol. 27, pp. 1167-1176.

    Article  Google Scholar 

  12. Y.W. Lin and K.L. Lin: J. Appl. Phys., 2010, vol. 108, pp. 063536-1–063536-4.

    Google Scholar 

  13. H.Y. Chen and C. Chen: J. Mater. Res., 2012, vol. 27, pp. 1169-1177.

    Article  Google Scholar 

  14. R. Labie, W. Ruythooren and J. Van Humbeck: Intermetallics, 2007, vol. 15, pp. 396-403.

    Article  Google Scholar 

  15. W. Tang, A. He, Q. Liu and D.G. Ivey: Int. J. Min: Met. Mater., 2010, vol. 17, pp. 459-463.

    Google Scholar 

  16. M. Mita, M. Kajihara, N. Kurokawa and K. Sakamoto: Mater. Sci. Eng. A, 2005, vol. 403, pp. 269-275.

    Article  Google Scholar 

  17. J.O. Suh, K.N. Tu, A.T. Wu and N. Tamura: J. Appl. Phys., 2011, vol. 109, pp. 123513-1–5.

    Article  Google Scholar 

  18. V.I. Dybkov: Solid State Phenom., 2008, vol. 138, pp. 153-158.

    Article  Google Scholar 

  19. D. Gur and M. Bamberger: Acta Metall. Mater., 1998, vol. 46, pp. 4917-4923.

    Article  Google Scholar 

  20. J. Görlich, D. Baither and G. Schmitz: Acta Mater., 2010, vol. 58, pp. 3187-3197.

    Article  Google Scholar 

  21. S. Bader, W. Gust and H. Hieber: Acta Metall. Mater., 1995, vol. 43, pp. 329-337.

    Google Scholar 

  22. W.K. Choi, S.Y. Jang, J.H. Kim, K.W. Paik and H.M. Lee: J. Mater. Res., 2002, vol. 17, pp. 597-599.

    Article  Google Scholar 

  23. J.H. Kim, S.W. Jeong and H.M. Lee: Mater. Trans. JIM, 2004, vol. 45, pp. 710-713.

    Article  Google Scholar 

  24. K.A. Jackson, D.R. Uhlmann and J.D. Hunt: J. Cryst. Growth, 1967, vol. 1, pp. 1-36.

    Article  Google Scholar 

  25. A. Lis, M.S. Park, R. Arroyave and C. Leinenbach: J. Alloy. Compd., 2014, vol. 617, pp. 763-773.

    Article  Google Scholar 

  26. M.S. Park and R. Arroyave: J. Electron. Mater., 2009, vol. 38, pp. 2525-2533.

    Article  Google Scholar 

  27. C.H. Ma and R.A. Swalin, Acta Metall. Mater., 1960, vol. 8, pp. 388-395.

    Article  Google Scholar 

  28. J.A. van Beek, S.S. Stolk, F.J.J. van Loo: Zeitschrift fuer Metallkunde, 1982, vol. 73, pp. 439-444.

    Google Scholar 

  29. A.M. Gusak and K.N. Tu: Phys. Rev. B, 2002, vol. 66, pp. 115403 1-14.

  30. H. Flandorfer, U. Saeed, C. Luef, A. Sabbar and H. Ipser: Thermochim. Acta, 2007, vol. 459, pp. 34-39.

    Article  Google Scholar 

  31. Y. Wang, S.H. Chae, J. Im and P.S. Ho: IEEE 63rd Electronic Components and Technology Conference (ECTC), Las Vegas, 28–31 May 2013, DOI: 10.1109/ECTC.2013.6575845, pp. 1953–1958.

  32. J.W. Chan, W.B. Hillig, G.W. Sears: Acta Metall., 1964, vol. 12, pp. 1421-1439.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge ABB Corporate Research Switzerland for financing this study, in particular, Dr. Slavo Kicin and Dr. Franziska Brem for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Leinenbach.

Additional information

Manuscript submitted October 13, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lis, A., Kenel, C. & Leinenbach, C. Characteristics of Reactive Ni3Sn4 Formation and Growth in Ni-Sn Interlayer Systems. Metall Mater Trans A 47, 2596–2608 (2016). https://doi.org/10.1007/s11661-016-3444-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3444-4

Keywords

Navigation