Log in

Cone Production of Stone Pines in the South of Western Siberia: Results of 30 Years of Monitoring

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The structure of the reproductive function in four species and many geographic ecotypes of stone pines is studied on natural and experimental (clone archive and test progenies) objects. In Siberian stone pine in the south of the forest zone in Western Siberia, the dynamics of cone production is determined by weather conditions in the year of pollination. Seed productivity is declining due to late spring frosts and higher temperatures in September. Over the past 30 years, the directional change of these factors has determined a significant decline in cone production. The productivity and stability of the species and geographic ecotypes of stone pines is determined by the correspondence of their need for warmth to the climate of the test site. Under the conditions of climate change, the local ecotype in terms of growth and cone production is often inferior to more thermophilic species and ecotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Barzdajn, W., Kowalkowski, W., and Chmura, D., Variation in growth and survival among European provenances of Pinus sylvestris in a 30-year-old experiment, Dendrobiology, 2016, vol. 75, pp. 67–77.

    Article  Google Scholar 

  2. Bisi, F., von Hardenberg, J., Bertolino, S., Wauters, L.A., Imperio, S., Preatoni, D.G., Provenzale, A., Mazzamuto, M.V., and Martinoli, A., Current and future conifer seed production in the Alps: testing weather factors as cues behind masting, Eur. J. For. Res., 2016, vol. 135, pp. 743–754.

    Article  CAS  Google Scholar 

  3. Burns, K.C., Masting in a temperate tree: evidence for environmental prediction, Aust. Ecol., 2012, vol. 37, no. 2, pp. 175–182.

    Article  Google Scholar 

  4. Crawley, M.J. and Long, C.R., Alternate bearing, predator satiation and seedling recruitment in Quercus robur L, J. Ecol., 1995, vol. 83, no. 4, pp. 683–696.

    Article  Google Scholar 

  5. Crone, E.E. and Rapp, J.M., Resource depletion, pollen coupling, and the ecology of mast seeding, Ann. N.Y. Acad. Sci., 2014, vol. 1322, pp. 21–34.

    Article  CAS  Google Scholar 

  6. Davis, M.B. and Shaw, R.G., Range shifts and adaptive responses to Quaternary climate change, Science, 2001, vol. 292, pp. 673– 679.

    Article  CAS  Google Scholar 

  7. Goroshkevich, S.N., Dynamics of growth and seed production in the Siberian stone pine: the level and pattern of variation in characters, Russ. J. Ecol., 2008, vol. 39, no. 3, pp. 168–175.

    Article  Google Scholar 

  8. Goroshkevich, S.N., Dynamics of growth and fruiting of Siberian pine (Pinus sibirica Du Tour): cyclicity or acyclic fluctuations? Vestn. Tomsk. Gos. Univ., Biol., 2017, no. 38, pp. 104–121.

  9. Goroshkevich, S.N., Meteorologically dependent seed production of Siberian pine, Izv. Vyssh. Uchebn. Zaved., Lesn. Zh., 2021, no. 2, pp. 56–69.

  10. Iroshnikov, A.I., Population polymorphism of Siberian pine, in Izmenchivost’ drevesnykh rastenii Sibiri (Variability of Siberian Wood Plants), Krasnoyarsk: Inst. Lesa Drevesiny, Sib. Otd., Akad. Nauk SSSR, 1974, pp. 77–103.

  11. Kaya, Z., Adams, W.T., and Campbell, R.K., Adaptive significance of the intermittent pattern of shoot growth in Douglas-fir seedlings from southwest Oregon, Tree Physiol., 1994, vol. 14, no. 11, pp. 1277–1289.

    Article  CAS  Google Scholar 

  12. Kharuk, V.I., Im, S.T., Petrov, I.A., Dvinskaya, M.L., Shushpanov, A.S., and Golyukov, A.S., Climate-driven conifer mortality in Siberia, Global Ecol. Biogeogr., 2021, vol. 30, pp. 543–556.

    Article  Google Scholar 

  13. Nekrasova, T.P., Biologicheskie osnovy semenosheniya kedra sibirskogo (Biology of Seed Production in the Siberian Stone Pine), Novosibirsk: Nauka, 1972.

  14. Nekrasova, T.P., Pyl’tsa i pyl’tsevoi rezhim khvoinykh Sibiri (Pollen and Pollen Regime of Siberian Conifers), Novosibirsk: Nauka, 1983.

  15. Oleksyn, J., Tjoelker, M.G., and Reich, P.B., Growth and biomass partitioning of populations of Pinus sylvestris L. under simulated 50° and 60° N day lengths: evidence for photoperiodic ecotypes, New Phytol., 1992, vol. 120, pp. 561–574.

    Article  Google Scholar 

  16. Owens, J.N. and Blake, M.D., Forest Tree Seed Production: A Review of the Literature and Recommendations for Future Research. Canadian Forestry Service Report PI-X-53, Chalk River, ON: Petawawa Natl. For. Inst., 1985.

  17. Pallardy, S.G., Physiology of Woody Plants, San Diego: Academic, 2007, 3rd ed.

    Google Scholar 

  18. Rehfeldt, G.E., Leites, L.P., Bradley St Clair, J., Jaquish, B.C., Sáenz-Romero, C., López-Upton, J., and Joyce, D.G., Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: clines in growth potential, For. Ecol. Manage., 2014, vol. 324, pp. 138–146.

    Article  Google Scholar 

  19. Schauber, E.M., Kelly, D., Turchin, P., Simon, C., Lee, W.G., Allen, R.B., Payton, I.J., Wilson, P.R., Cowan, P.E., and Brockie, R.E., Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue, Ecology, 2002, vol. 83, no. 5, pp. 1214–1225.

    Article  Google Scholar 

  20. Tret’yakova, I.N., Embriologiya khvoinykh. Fiziologicheskie aspekty (Embryology of Conifers. Physiological Aspects), Novosibirsk: Nauka, 1990.

  21. Vitasse, Y. and Rebetez, M., Unprecedented risk of spring frost damage in Switzerland and Germany in 2017, Clim. Change, 2018, vol. 149, pp. 233–246.

    Article  Google Scholar 

  22. Vorob’ev, V.N., Biologicheskie osnovy kompleksnogo ispol’zovaniya kedrovykh lesov (Biological Principles of Comprehensive Management of Siberian Stone Pine Forests), Novosibirsk: Nauka, 1983.

  23. Zhuk, E.A. and Goroshkevich, S.N., Growth of Siberian pine (Pinus cembra L.) in the south of Western Siberia, Vestn. Altai. Gos. Agrar. Univ., 2017, no. 12 (158), pp. 74–78.

  24. Zhuk, E.A. and Goroshkevich, S.N., Growth and reproduction in Pinus sibirica ecotypes from Western Siberia in a common garden experiment, New For., 2018, vol. 49, pp. 159–172.

    Article  Google Scholar 

  25. Zwiers, F.W., Alexander, L.V., Hegerl, G.C., Knutson, T.R., Kossin, J.P., Naveau, P., Nicholls, N., Schär, C., Seneviratne, S.I., and Zhang, X., Climate extremes: challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events, in Climate Science for Serving Society: Research, Modeling and Prediction Priorities, Dordrecht: Springer-Verlag, 2013, pp. 339–389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Vasilyeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goroshkevich, S.N., Velisevich, S.N., Zhuk, E.A. et al. Cone Production of Stone Pines in the South of Western Siberia: Results of 30 Years of Monitoring. Contemp. Probl. Ecol. 15, 262–269 (2022). https://doi.org/10.1134/S1995425522030064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425522030064

Keywords:

Navigation